MYERS ENGINEERING

Structural Calculations

MUST BEAR ORIGINAL BLUE INK SIGNATURE OR DIGITAL PDF SIGNATURE FOR PERMIT SUBMITTAL.

Project: Chase's Corner – Lot 2 Mercer Island, WA

May 4, 2022

2018 INTERNATIONAL BUILDING CODE 100 MPH BASIC WIND, EXPOSURE B, K_{zt} = 1.03 RISK CATEGORY II - SOIL SITE CLASS D SEISMIC DESIGN CATEGORY D (IBC)

3206 50th Street Court, Suite 210-B Gig Harbor, WA 98335 Phone: 253-858-3248

Email: myengineer@centurytel.net

Myers Engineering, LLC

Gig Harbor, WA 98335

3206 50th Street Ct NW, Ste 210-B PROJECT : Chase's Corner - Lot 2 Email: myengineer@centurytel.net

Phone: 253-858-3248

 $psf := \frac{lb}{ft}$ $plf := \frac{lb}{ft}$

DESIGN LOADS:

ROOF DEAD LOADS

15 PSF Total

ROOF LIVE LOADS

25 PSF (Snow)

FLOOR DEAD LOADS

15 PSF Total

FLOOR LIVE LOADS

40 PSF (Reducible)

STAIR LIVE LOADS

100 PSF

WOOD TYPE:

WOODS: JOISTS OR RAFTERS 2X.-----

-----DF#2

BEAMS OR HEADERS 4X - 6X OR LARGER------DF#2

LEDGERS AND TOP PLATES------DF#2

POSTS

4X4-----

-----DF#2

4X6------DF#2

6X6-----

-DF#1

GLUED-LAMINATED (GLB) BEAM & HEADER.

Fb=2,400 PSI, Fv=165 PSI, Fc (Perp) =650 PSI, E=1,800,000 PSI.

PARALLAM (PSL) 2.0E BEAM & HEADER.

Fb=2,900 PSI, Fv=290 PSI, Fc (Perp) =750 PSI, E=2,000,000 PSI.

MICROLAM (LVL) 1.9E BEAM & HEADER

Fb=2.600 PSI, Fv=285 PSI, Pc (Perp) =750 PSI, E=1,900,000 PSI.

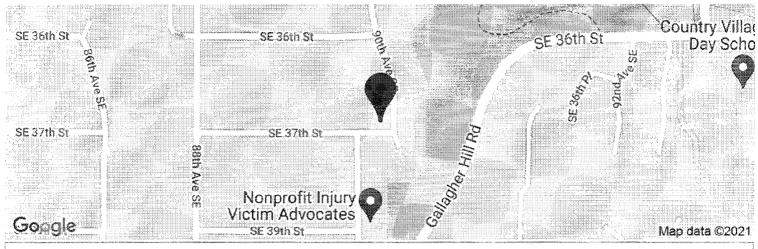
TIMBERSTRAND (LSL) 1.3E BEAM, HEADER, & RIM BOARD

Fb=1,700 PSI, Fv=400 PSI, Pc (Perp) =680 PSI, E=1,300,000 PSI.

TRUSSES:

PREFABRICATED WOOD TRUSSES SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL REGISTERED IN THE STATE OF WASHINGTON. TRUSS DESIGNS SHALL COMPLY WITH THE REQUIREMENTS OF IBC 2303.4. SUBMITTAL PACKAGE SHALL COMPLY WITH REQUIREMENTS OF IBC 2303.4.1.4.

UNLESS OTHERWISE SPECIFIED BY LOCAL BUILDING OFFICIAL OR STATUTE, TRUSS DESIGNS BEARING THE SEAL AND SIGNATURE OF THE TRUSS DESIGNER SHALL BE AVAILABLE AT TIME OF INSPECTION.


ENGINEERED I-JOISTS

-FLOOR JOISTS & BEAMS OF EQUAL OR BETTER CAPACITY MAY BE SUBSTITUTED FOR THOSE SHOWN ON THIS PLAN, "EQUAL" IS DEFINED AS HAVING MOMENT CAPACITY, SHEAR CAPACITY, AND STIFFNESS WITHIN 3% OF THE SPECIFIED JOISTS OR BEAMS.

Chase's Corner Lot 2

Latitude, Longitude: 47.5771, -122.2187

	100 FEE HELLER BOOK STORY CONTROL OF BRANCHES BOOK STORY CONTROL OF STORY
Date	12/1/2021, 4:45:16 PM
Design Code Reference Document	ASCE7-16
Risk Category	·
Site Class	D - Default (See Section 11.4.3)

Туре	Value	Description
S _S	1.404	MCE _R ground motion. (for 0.2 second period)
S ₁	0.488	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.684	Site-modified spectral acceleration value
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S _{DS}	1.123	Numeric seismic design value at 0.2 second SA
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA

Туре	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
Fa	1.2	Site amplification factor at 0.2 second
F _v	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.601	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.721	Site modified peak ground acceleration
TL	6	Long-period transition period in seconds
SsRT	1.404	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.555	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	3.535	Factored deterministic acceleration value. (0.2 second)
S1RT	0.488	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.544	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	1.42	Factored deterministic acceleration value. (1.0 second)
PGAd	1.208	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.903	Mapped value of the risk coefficient at short periods
C _{R1}	0.897	Mapped value of the risk coefficient at a period of 1 s

PROJECT: Chase's Corner - Lot 2

Phone: 253-858-3248

Email: myengineer@centurytel.net

LATERAL ANALYSIS :

BASED ON 2018 INTERNATIONAL BUILDING CODE (IBC)

Lateral Forces will be distributed along lines of Force/Resistance. Lines of Force/Resistance will be investigated for both wind and seismic lateral loads. Roof and Floor diaphragms are considered flexible.

Risk Category II per IBC 1604.5 & Soils Site Class D (Assumed)

SEISMIC DESIGN:

SEISMIC DESIGN BASED ON 2018 IBC Section 1613.1

LIGHT FRAME CONSTRUCTION LESS THAN THREE STORIES IN HEIGHT ABOVE GRADE.

Seismic Design Data:

$$I_e := 1.0$$
 (ASCE 7-16 Table 1.5-2)

$$S_s := 1.404$$

$$S_1 := 0.488$$

$$S_{ms} := 1.684$$

$$S_{ms} := 1.684$$
 $S_{m1} := 0.878$

Equation 11.4-3
$$S_{DS} := \frac{2}{3} \cdot S_{ms} = 1.12$$

Equation 11.4-4
$$S_{D1} := \frac{2}{3} \cdot S_{m1} = 0.59$$

–Seismic Design Category D (S_{DS} greater than 0.50g & S_{D1} greater than 0.20g)

$$S_{a} := \frac{1}{\cos\left(\operatorname{atan}\left(\frac{8}{12}\right)\right)} = 1$$

$$S_{a} := \frac{1}{\cos\left(\operatorname{atan}\left(\frac{8}{12}\right)\right)} = 1.2$$

$$S_{b} := \frac{1}{\cos\left(\operatorname{atan}\left(\frac{3}{12}\right)\right)} = 1.03$$

Plan Area for Each Level:

$$A_1 := 1810 \text{ft}^2 \cdot S_a$$
 $A_{2a} := 1615 \text{ft}^2$ $A_{2b} := 577 \text{ft}^2 \cdot S_b$

$$A_{2a} := 1615 ft^2$$

$$A_{2b} := 577 ft^2 \cdot S_t$$

(Upper Roof)

(Upper Floor)

(Lower Roof)

Plan Perimeter for Each Level:

$$P_1 := 2(32ft) + 2(60ft)$$

$$P_2 := 2(32ft) + 2(60ft)$$

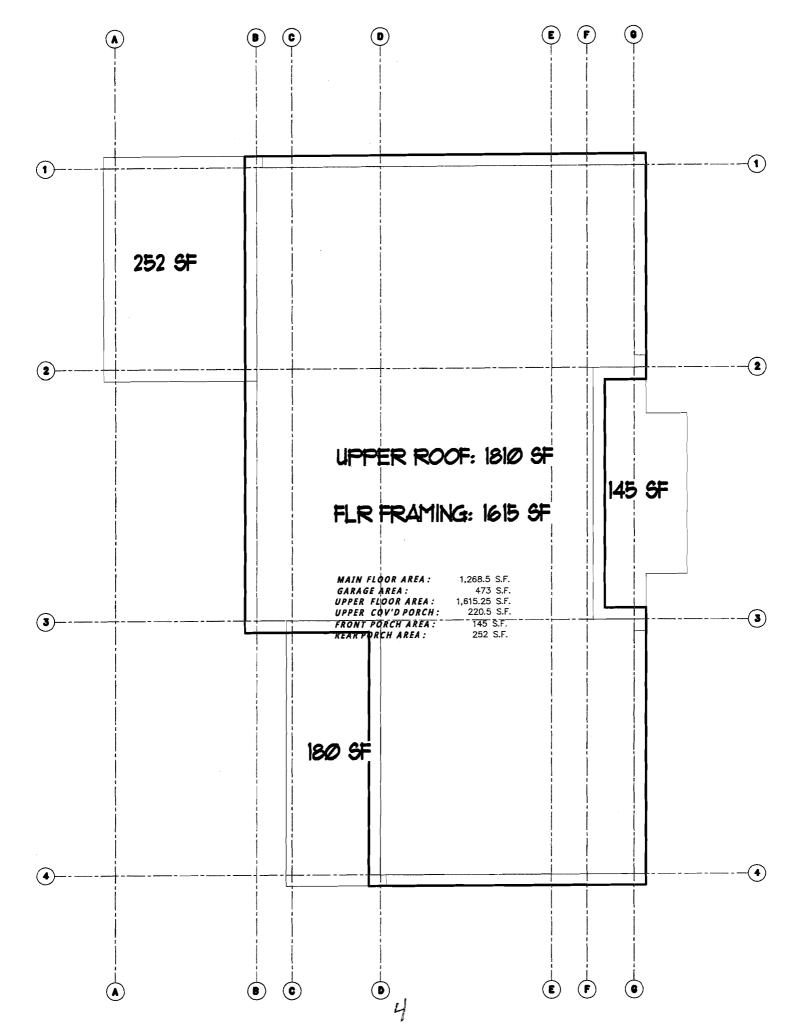
(Upper Floor)

(Main Floor)

W,w_x = Seismic Weight of Overall Structure, Seismic Weight of Structure above Level x (LB.)

Weight of Structure at Each Level:

Story Weight at Upper Floor:


$$\mathbf{w}_1 := 15 \cdot \mathbf{psf} \cdot \mathbf{A}_1 + 12 \cdot \mathbf{psf} \cdot 4.25 \cdot \mathbf{ft} \cdot \mathbf{P}_1$$

Weight of floors include 10psf weight of floor framing, flooring material, insulation, plus 10psf for miscellaneous interior walls.

Story Weight at Main Floor:

$$\mathbf{w}_2 \coloneqq 20 \cdot \mathsf{psf} \cdot \mathbf{A}_{2a} + 15 \mathsf{psf} \cdot \mathbf{A}_{2b} + 12 \cdot \mathsf{psf} \cdot \left(4.25 \cdot \mathsf{ft} \cdot \mathbf{P}_1 + 5 \, \mathsf{ft} \cdot \mathbf{P}_2\right)$$

$$W_1 = w_1 + w_2 = 103659.61 \text{ lb}$$

3206 50th Street Ct NW, Ste 210-B

Gig Harbor, WA 98335

PROJECT : Chase's Corner - Lot 2

Phone: 253-858-3248

Email: myengineer@centurytel.net

Approximate Fundamental Period, Ta.

$$C_t := 0.02$$
 $\chi := 0.75$ (per ASCE 7-16 Table 12.8-2)

$$C_t := 0.02$$
 $\chi := 0.75$ (per ASCE 7-16 Table 12.8-2) $h_n := 24$ (Structural Height per ASCE 7-16 Sect. 11.2)

$$T_a := C_t \cdot h_n^{\chi} = 0.22$$
 (ASCE 7-16 Eq. 12.8-7) $T_L := 6$ (per ASCE 7-16 Fig. 22-14)

$$T_L := 6$$
 (per ASCE 7-16 Fig. 22-14)

$$\mathrm{T_a}$$
 is less than $\mathrm{T_L}$, therefore Cs need not exceed:

$$\frac{S_{D1}}{\left(\frac{R}{I_e}\right) \cdot T_a} = 0.42$$
 (ASCE 7-16 Eq. 12.8-3)

$$C_s$$
 shall not be less than: $0.044S_{DS} \cdot I_e = 0.05$

$$0.044S_{DS} \cdot I_e = 0.05$$

$$C_s := \frac{S_{DS}}{\left(\frac{R}{I_e}\right)} = 0.17$$
 (ASCE 7-16 Eq. 12.8-2)

Total Base Shear:
$$V_E := C_s \cdot W = 17903.88 \, lb$$

Vertical Shear distribution at each level per ASCE 7-16 Eq. 12.8-12:

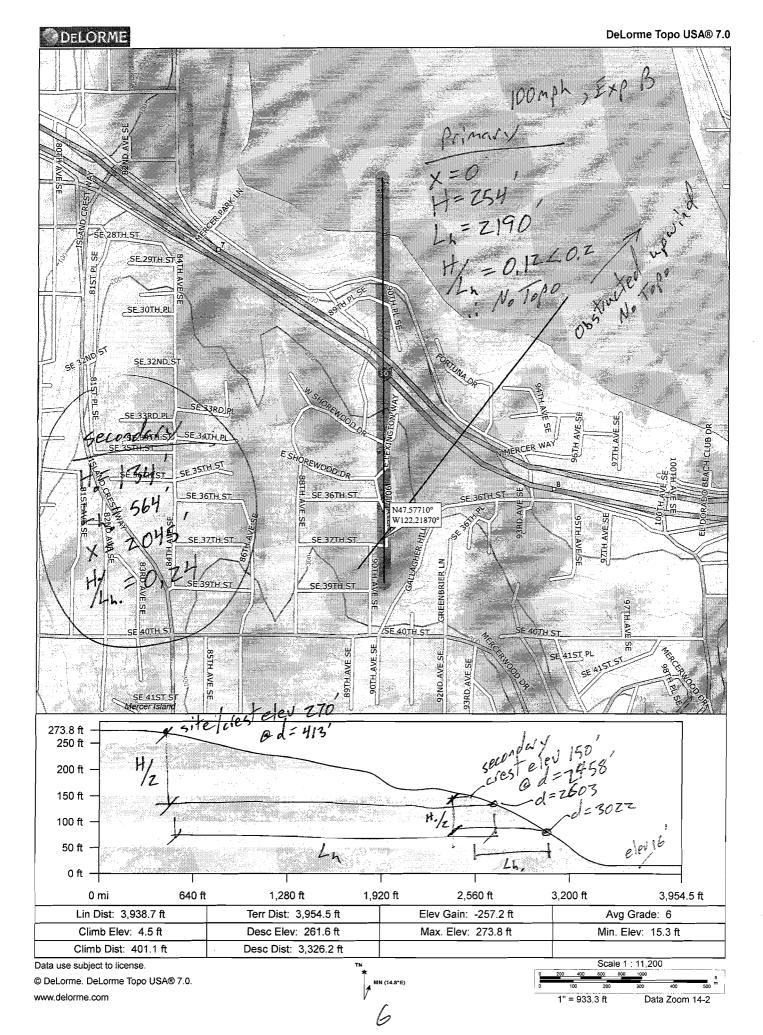
for structures having a period of 0.5 sec or less: k := 1

$$h_1 \coloneqq 19 \mathrm{ft} \qquad \qquad h_2 \coloneqq 10 \mathrm{ft}$$

$$h_2 := 10ft$$

(Height from base to level x)

$$C_{v1} := \frac{(w_1 \cdot h_1)}{(w_1 \cdot h_1 + w_2 \cdot h_2)} = 0.56$$


$$F_1 := C_{v1} \cdot V_E = 10102.42 \, lb$$

Story Shear at Upper Floor

$$C_{v2} := \frac{\left(w_2 \cdot h_2\right)}{\left(w_1 \cdot h_1 + w_2 \cdot h_2\right)} = 0.44$$

$$F_2 := C_{v2} \cdot V_E = 7801.46 \text{ lb}$$

Story Shear at Main Floor

WIND DESIGN

Use analytical procedure of ASCE 7-16 Chapter 27 (Directional Procedure for buildings of all heights)

W:= 100 Nominal 3-Sec Gust (MPH) for Risk Category II (Figure 26.5-1B).

 $K_d := 0.85$ Wind Directionality Factor (Table 26.6-1). $h := 24 \cdot \text{ft}$ Mean Roof Height as per Sect. 26.2

 $K_e := 1$ Ground Elevation Factor (Sect. 26.9)

Exposure Category B (ASCE 7-16 Sect. 26.7.3)

Topographic Factor (Kzt) (Figure 26.8-1): 2-D Escarpment with building downwind of crest.

$$x := 2045 \text{ft}$$
 $H := 134 \text{ft}$ $L_h := 564 \text{ft}$ $z := h$ $\gamma := 2.5$ $\mu := 4$

$$K_1 := 0.75 \left(\frac{H}{L_h}\right) = 0.18 \qquad K_2 := \left(1 - \frac{x}{\mu L_h}\right) = 0.09 \qquad K_3 := e^{\frac{\left(-\gamma \cdot z\right)}{L_h}} = 0.9 \qquad K_{zt} := \left(1 + K_1 \cdot K_2 \cdot K_3\right)^2 = 1.03$$

G:= 0.85 Gust Effect Factor (ASCE 7-16 Sect. 26.11.1)

Building is an Enclosed Building as per ASCE 7-16 Sect. 26.12

Velocity Pressure Exposure Coefficient (Table 26.10-1):

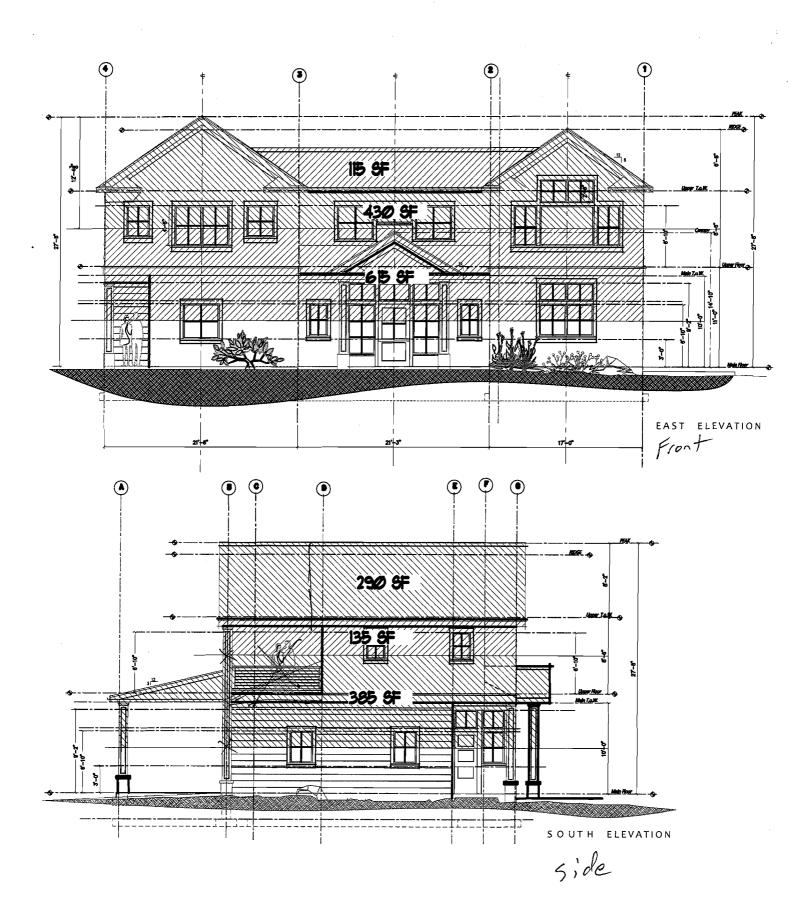
$$z_g \coloneqq 1200 \mathrm{ft} \qquad \alpha \coloneqq 7.0 \qquad \qquad \text{(per ASCE 7-16 Table 26.11-1 based on Exposure Category)} \\ z_g = 1200 \mathrm{ft}, \ \alpha = 7.0 \ \text{(Exp B)}, \ \ z_g = 900 \mathrm{ft}, \ \alpha = 9.5 \ \text{(Exp C)}, \ \ z_g = 700 \mathrm{ft}, \ \alpha = 11.5 \ \text{(Exp D)}$$

$$z_1 := 19 \mathrm{ft}$$
 $z_2 := 15 \mathrm{ft}$ Height from ground to level x ($z_{min} = 15 \mathrm{ft}$)

$$K_{z1} \coloneqq 2.01 \left(\frac{z_1}{z_g}\right)^{\left(\frac{2}{\alpha}\right)} = 0.61 \qquad \qquad K_{z2} \coloneqq 2.01 \left(\frac{z_2}{z_g}\right)^{\left(\frac{2}{\alpha}\right)} = 0.57 \qquad \qquad K_h \coloneqq 2.01 \left(\frac{h}{z_g}\right)^{\left(\frac{2}{\alpha}\right)} = 0.66$$

External Pressure Coefficients w/ Roof Pitch = 3/12 (14 degrees) Front to Back & 8/12 (34 degrees) Side to Side Taken from Figure 27.3-1

Front to Back: Side to Side


$$L_{fb} := 32 \text{ft}$$
 $B_{fb} := 60 \text{ft}$ $\frac{L_{fb}}{B_{fb}} = 0.53$ $\frac{h}{L_{fb}} = 0.75$ $L_{ss} := 60 \text{ft}$ $B_{ss} := 32 \text{ft}$ $\frac{L_{ss}}{B_{ss}} = 1.88$ $\frac{h}{L_{ss}} = 0.4$

$$C_{pfl} \coloneqq .8$$
 Windward Wall $C_{psl} \coloneqq .8$ Windward Wall

$$C_{pf2} \coloneqq -0.18 \qquad \text{Windward Roof} \qquad \qquad C_{ps2} \coloneqq \ 0.34 \qquad \text{Windward Roof}$$

$$C_{pf3} \coloneqq -.55$$
 Leeward Roof $C_{ps3} \coloneqq -.6$ Leeward Roof

$$C_{pf4} \coloneqq -.5$$
 Leeward Wall $C_{ps4} \coloneqq -0.33$ Leeward Wall

Velocity Pressure (q₇) Evaluated at Height (z) (Equation 26.10-1)

$$q_{z1} := 0.00256 \cdot K_{z1} \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 = 13.78 \quad q_{z2} := 0.00256 \cdot K_{z2} \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 = 12.88 \quad q_h := 0.00256 \cdot K_h \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 = 14.74$$

Design Wind Pressures $p = qGC_p - q_i(GC_{pi})$ (Equation 27.3-1) where q_i will conservatively be taken equal to q_h

$$p_{ww1} := q_{z1} \cdot G \cdot C_{pf1} \cdot psf = 9.37 \text{ ft}^{-2} \cdot lb$$

$$p_{ww2} := q_{z2} \cdot G \cdot C_{nf1} \cdot psf = 8.76 \text{ ft}^{-2} \cdot lb$$

$$p_{wr1} := q_h \cdot G \cdot C_{pf2} \cdot psf = -2.25 \text{ ft}^{-2} \cdot lb$$

$$p_{lr1} := q_h \cdot G \cdot C_{pf3} \cdot psf = -6.89 \text{ ft}^{-2} \cdot lb$$

$$p_{lw1} := q_h \cdot G \cdot C_{pf4} \cdot psf = -6.26 \text{ ft}^{-2} \cdot lb$$

$$p_{wr2} := q_h \cdot G \cdot C_{ps2} \cdot psf = 4.26 \text{ ft}^{-2} \cdot lb$$

$$p_{1r2} := q_h \cdot G \cdot C_{ps3} \cdot psf = -7.51 \text{ ft}^{-2} \cdot lb$$

$$p_{1w2} := q_h \cdot G \cdot C_{ps4} \cdot psf = -4.13 \text{ ft}^{-2} \cdot lb$$

The Internal Pressures on Windward and Leeward Walls & Roofs will offset each other for the lateral design of the overall building and will therefore be ignored for this application.

Check net pressure not less than 16psf at walls & 8psf at roof over projected vertical plane per ASCE 7-16 Sec. 27.1-5:

$$p_{wr1} - p_{lr1} = 4.63 \text{ ft}^{-2} \cdot lb$$

$$p_{ww1} - p_{lw1} = 15.64 \, ft^{-2} \cdot lb$$

$$p_{ww2} - p_{lw1} = 15.02 \, ft^{-2} \cdot lb$$

$$p_{wr2} - p_{lr2} = 11.77 \, ft^{-2} \cdot lb$$

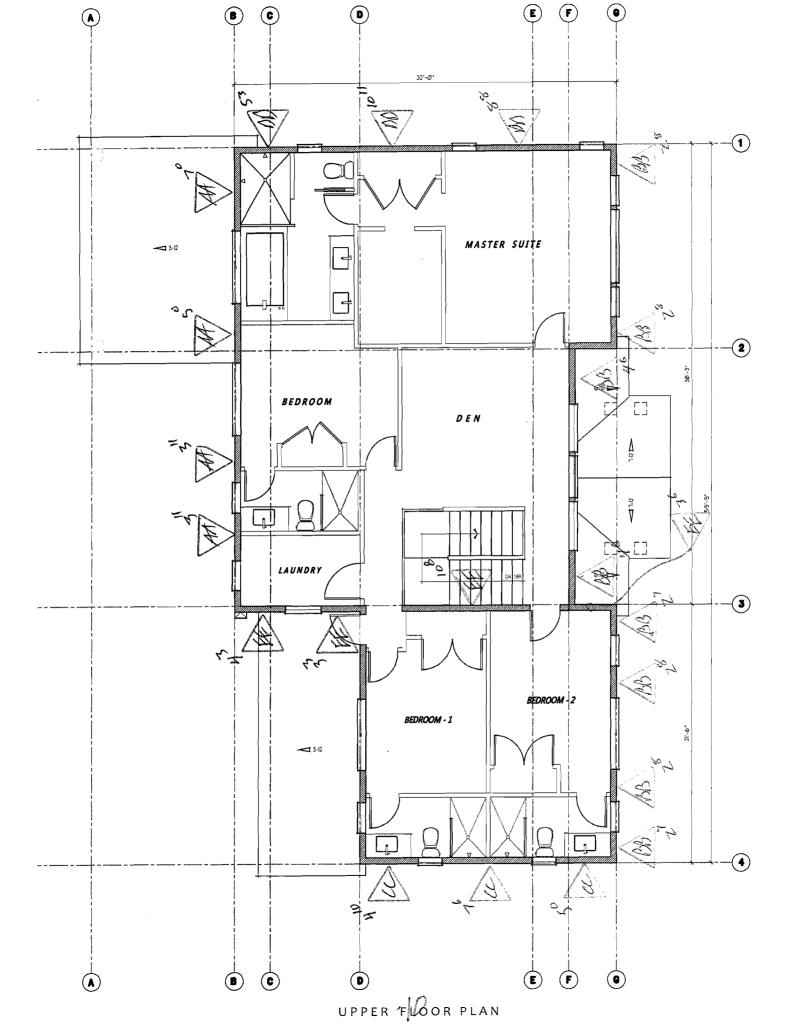
$$p_{ww1} - p_{lw2} = 13.51 \text{ ft}^{-2} \cdot lb$$

$$p_{ww2} - p_{lw2} = 12.89 \, ft^{-2} \cdot lb$$

Wind Pressure at Upper Roof (Front to Back):

$$V_{1W} := (8psf)190ft^2 + (16psf) \cdot 430 \cdot ft^2 = 8400 lb$$

Wind Pressure at Main Floor (Front to Back):


$$V_{2W} := (8psf)0ft^2 + (16psf) \cdot 615 \cdot ft^2 = 9840 lb$$

Wind Pressure at Upper Roof (Side to Side):

$$V_{3W} := (p_{wr2} - p_{lr2}) \cdot 290 ft^2 + (16psf) \cdot 135 ft^2 = 5574.27 lb$$

Wind Pressure at Main Floor (Side to Side):

$$V_{4W} := (p_{wt2} - p_{lr2}) \cdot 0 ft^2 + (16psf) \cdot 385 ft^2 = 6160 lb$$

WALL AA:

Story Shear due to Wind:

$$V_{3W} = 5574.27 \text{ lb}$$

Story Shear due to Seismic:

$$F_1 = 10102.42 \, lb$$

Bldg Width in direction of Load:

$$L_t := 32 \cdot ft$$

Distance between shear walls: $L_1 := 32 \cdot \text{ft}$

$$L_1 := 32 \cdot ft$$

Shear Wall Length:

Laa :=
$$\left[2.3.92\left(\frac{7.83}{8.5}\right) + 5 + 7\right]$$
ft = 19.22 ft

Percent full height sheathing:

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

per AF&PA SDPWS Table 4.3.3.5

Wind Force: vaa :=
$$\frac{\frac{0.6V_{3W}}{L_t} \cdot \frac{L_1}{2}}{L_{aa}}$$

Seismic Force:
$$\rho := 1.0$$

$$E_{aa} := \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{Laa}$$

$$vaa = 87 \, ft^{-1} \cdot lb$$

$$vaa = 87 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{vaa}{C_0} = 87 \text{ ft}^{-1} \cdot \text{lb}$$

$$E_{aa} = 183.95 \, \text{ft}^{-1} \cdot \text{lb}$$

$$E_{aa} = 183.95 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_{aa}}{C_0} = 183.95 \text{ ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

$$L_{aa} := 3.92 \cdot ft$$

Plate Height: Pt := 8.5 · ft

$$W_{aa} := (15 \cdot psf) \cdot 15 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

$$DLRaa := \frac{W_{aa} \cdot L_{aa}}{2}$$

$$DLRaa = 607.6 \text{ lb}$$

$$DLRaa = 607.6 lb$$

Chord Force:

$$CFaa_w := \frac{vaa \cdot L_{aa} \cdot Pt}{C_o \cdot L_{aa}}$$

$$CFaa_w = 739.48 \text{ lb}$$

$$CFaa_{W} = 739.48 \, lb$$

$$CFaa_s := \frac{E_{aa} \cdot L_{aa} \cdot Pt}{C_{ab} \cdot L_{ab}}$$

$$CFaa_s = 1563.56 \text{ lb}$$

$$CFaa_s = 1563.56 lb$$

Holdown Force:

$$HDFaa_w := CFaa_w - 0.6 \cdot DLRaa = 374.92 lb$$

$$HDFaa_s := CFaa_s - (0.6 - 0.14S_{DS})DLRaa = 1294.49 lb$$

Simpson MSTC40

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$\begin{split} Z_N &:= 102 \cdot lb \quad C_D := 1.6 \\ B_p &:= \frac{\left(Z_N \cdot C_D \cdot C_o\right)}{vaa} = 1.88 \text{ ft} \qquad \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{E_{aa}} = 0.89 \text{ ft} \end{split}$$

16d @ 8" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_s := 860 \cdot lb$$
 $C_D := 1.6$ $Z_B := A_s \cdot C_D$ $Z_B = 1376 \, lb$

As :=
$$\frac{(Z_B \cdot C_o)}{vaa}$$
 = 15.82 ft $\frac{(Z_B \cdot C_o)}{E_{co}}$ = 7.48 ft

WALL BB:

Story Shear due to Wind:

$$V_{3W} = 5574.27 \, lb$$

Story Shear due to Seismic: $F_1 = 10102.42 \text{ lb}$

$$F_1 = 10102.42 \, lb$$

Bldg Width in direction of Load:

$$L_{th} := 32 \cdot ft$$

Distance between shear walls:

$$L_{\lambda} := 32 \cdot \text{ft}$$

Shear Wall Length:

Lbb :=
$$2 \cdot 2.58 \left(\frac{5.17}{8.5} \right) + 4 \cdot 2.67 \left(\frac{5.33}{8.5} \right) + 2 \cdot 4.5 \right]$$
 ft = 18.84 ft

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100 Max Opening Height = 0ft-0in, Therefore $C_{\text{QN}} = 1.00$ per AF&PA SDPWS Table 4.3.3.5

$$\mbox{Wind Force: } \mbox{ vbb := } \frac{ \frac{0.6 \mbox{V}_{3W}}{\mbox{L_t}} \cdot \frac{\mbox{L_i}}{2} }{\mbox{Lbb}}$$

$$\rho := 1.0$$

Seismic Force:
$$\rho := 1.0$$
 $E_{bb} := \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{Lbb}$

$$vbb = 88.78 \, ft^{-1} \cdot lb$$

$$vbb = 88.78 \, ft^{-1} \cdot lb$$
 $\frac{vbb}{C_{-}} = 88.78 \, ft^{-1} \cdot lb$

$$E_{bb} = 187.72 \, \text{ft}^{-1} \cdot 11$$

$$E_{bb} = 187.72 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_{bb}}{C_0} = 187.72 \text{ ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

$$L_{bb} := 2.58 \cdot ft$$
 Plate Height: $Pt := 8.5 \cdot ft$

$$W_{bb} := (15 \cdot psf) \cdot 2 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

$$DLRbb := \frac{W_{bb} \cdot L_{bb}}{2} \qquad DLRbb = 148.35 \, lb$$

$$DLRbb = 148.35 lb$$

Chord Force:

$$CFbb_w := \frac{vbb \cdot L_{bb} \cdot Pt}{C_o \cdot L_{bb}}$$

$$CFbb_w = 754.66 \, lb$$

$$CFbb_w = 754.66 \, lb$$

$$CFbb_{s} := \frac{E_{bb} \cdot L_{bb} \cdot Pt}{C_{o} \cdot L_{bb}}$$

$$CFbb_{s} = 1595.64 \text{ lb}$$

$$CFbb_{s} = 1595.64 \, lb$$

Holdown Force:

$$HDFbb_w := CFbb_w - 0.6 \cdot DLRbb = 665.65 lb$$

$$HDFbb_s := CFbb_s - (0.6 - 0.14S_{DS}) \cdot DLRbb = 1529.95 lb$$

Simpson MSTC40 at rim or MSTC28 at flush beam

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{NN} := 1.6$$

$$B_{NN} := \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{vbb} = 1.84 \text{ ft} \qquad \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{E_{bb}} = 0.87 \text{ ft}$$

16d @ 8" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_s := 860 \cdot lb$$
 $C_D := 1.6$ $Z_{B} := A_s \cdot C_D$ $Z_B = 1376 \, lb$ $(Z_B \cdot C_0)$ $(Z_B \cdot C_0)$

$$As:= \frac{\left(Z_{B} \cdot C_{o}\right)}{vbb} = 15.5 \text{ ft} \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{E_{bb}} = 7.33 \text{ ft}$$

WALL CC:

Story Shear due to Wind:

$$V_{1W} = 8400 \, lb$$

Story Shear due to Seismic: $F_1 = 10102.42 lb$

$$F_1 = 10102.42 \, lb$$

Bldg Width in direction of Load: La:= 60.ft

Distance between shear walls:

$$L_{\rm ab} := 21.5 \cdot \text{ft}$$

Shear Wall Length:

$$Lcc := (5 + 4.83 + 7.5)ft = 17.33 ft$$

Percent full height sheathing:
$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Wind Force:
$$vcc := \frac{0.6V_{1W}}{L_t} \cdot \frac{L_1}{2}$$

Seismic Force:
$$\rho = \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{L_{cc}}$$

$$vcc = 52.11 \, ft^{-1} \cdot lb$$

$$vcc = 52.11 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{vcc}{C_0} = 52.11 \text{ ft}^{-1} \cdot \text{lb}$

$$E_{cc} = 73.11 \, \text{ft}^{-1} \cdot \text{lb}$$

$$E_{cc} = 73.11 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_{cc}}{C_0} = 73.11 \text{ ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

$$L_{cc} := 4.83 \cdot ft$$

$$L_{cc} := 4.83 \cdot \text{ft}$$
 Plate Height: Pt := 8.5 \cdot ft

$$W_{cc} := (15 \cdot psf) \cdot 11 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

DLRcc :=
$$\frac{W_{cc} \cdot L_{cc}}{2}$$
 DLRcc = 603.75 lb

Chord Force:

$$CFcc_{w} := \frac{vcc \cdot L_{cc} \cdot Pt}{C_{o} \cdot L_{cc}}$$

$$CFcc_{w} = 442.9 \, lb$$

$$CFcc_w = 442.9 lb$$

$$CFcc_s := \frac{E_{cc} \cdot L_{cc} \cdot Pt}{C_o \cdot L_{cc}}$$

$$CFcc_s = 621.44 \text{ lb}$$

$$CFcc_s = 621.44 \, lb$$

Holdown Force:

$$HDFcc_w := CFcc_w - 0.6DLRcc = 80.65 lb$$

$$HDFcc_s := CFcc_s - (0.6 - 0.14S_{DS}) \cdot DLRcc = 354.09 lb$$

No Holdown Required

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$B_{DN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{vcc} = 3.13 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{cc}} = 2.23 \text{ ft}$$

16d @ 16" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

As:= 860·lb
$$C_D$$
:= 1.6 Z_{B_0} := $A_s \cdot C_D$ Z_B = 1376·lb A_s := $\frac{(Z_B \cdot C_o)}{v_{CC}}$ = 26.41 ft $\frac{(Z_B \cdot C_o)}{E_{CO}}$ = 18.82 ft

Myers Engineering, LLC

3206 50th Street Ct NW. Ste 210-B Gig Harbor, WA 98335

PROJECT: Chase's Corner - Lot 2

Phone: 253-858-3248

Email: myengineer@centurytel.net

WALL DD:

Story Shear due to Wind:

$$V_{1W} = 8400 \, lb$$

Story Shear due to Seismic:

$$F_1 = 10102.421b$$

Bldg Width in direction of Load:

$$L_{t} = 60 \cdot ft$$

Distance between shear walls:

$$L_{\rm ab} := 38.5 \cdot \text{ft}$$

Shear Wall Length: Ldd :=
$$(5.25 + 10.92 + 8.67)$$
ft = 24.84 ft

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100

Max Opening Height = Oft-Oin, Therefore Control = 1.00 per AF&PA SDPWS Table 4.3.3.5

Wind Force: $vdd := \frac{\frac{-1}{L_t} \cdot \frac{-1}{2}}{L_t}$

Seismic Force:
$$\rho := 1.0$$
 $E_{dd} := \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{L_{dd}}$

$$vdd = 65.1 \text{ ft}^{-1} \cdot \text{lb}$$

$$vdd = 65.1 \text{ ft}^{-1} \cdot lb \qquad \frac{vdd}{C_0} = 65.1 \text{ ft}^{-1} \cdot lb$$

$$E_{dd} = 91.34 \, \text{ft}^{-1} \cdot 18$$

$$E_{dd} = 91.34 \,\text{ft}^{-1} \cdot \text{lb}$$
 $\frac{E_{dd}}{C_0} = 91.34 \,\text{ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:
$$L_{dd} := 5.25 \cdot ft$$
 Plate Height: $Pt := 8.5 \cdot ft$

 $W_{dd} := (15 \cdot psf) \cdot 9 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$

$$DLRdd := \frac{W_{dd} \cdot L_{dd}}{2}$$
 DLRdd = 577.5 lb

$$DLRdd = 577.5 lb$$

Chord Force:

$$CFdd_w := \frac{vdd \cdot L_{dd} \cdot Pt}{C_o \cdot L_{dd}}$$

$$CFdd_w = 553.32 lb$$

$$CFdd_w = 553.32 lb$$

$$CFdd_s := \frac{E_{dd} \cdot L_{dd} \cdot Pt}{C_s \cdot L_{dd}}$$

$$CFdd_s = 776.37 \text{ lb}$$

$$CFdd_s = 776.37 lb$$

Holdown Force:

$$HDFdd_w := CFdd_w - 0.6DLRdd = 206.82 lb$$

$$HDFdd_s := CFdd_s - (0.6 - 0.14S_{DS})DLRdd = 520.64 lb$$

No Holdown Required

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{D} := 1.6$$

$$Z_{NN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{vdd} = 2.51 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{dd}} = 1.79 \text{ ft}$$

16d @ 16" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{s} := 860 \cdot lb$$
 $C_{D} := 1.6$ $Z_{B} := A_{s} \cdot C_{D}$ $Z_{B} = 1376 \, lb$

$$As := \frac{\left(Z_{B} \cdot C_{o}\right)}{vdd} = 21.14 \,\text{ft} \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{E_{dd}} = 15.06 \,\text{ft}$$

WALL EE:

Story Shear due to Wind:

$$V_{1W} = 8400 \, lb$$

Story Shear due to Seismic: $F_1 = 10102.42 \, lb$

$$F_1 = 10102.42 \, lb$$

Bldg Width in direction of Load:

$$L_t = 60 \cdot \text{ft}$$

Distance between shear walls: $L_{\text{WW}} := 21.5 \cdot \text{ft}$ $L_2 := 38.5 \text{ft}$

$$L_{\rm sk} := 21.5 \cdot \text{ft}$$

$$L_2 := 38.5 ft$$

Shear Wall Length:

Lee :=
$$\left[3.25 \left(\frac{6.5}{8.5} \right) + 4.25 + 3.5 \left(\frac{7}{8.5} \right) + 10.67 \right]$$
 ft = 20.29 ft

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100

PROJECT: Chase's Corner - Lot 2

Max Opening Height = 0ft-0in, Therefore $C_{QQ} := 1.00$ per AF&PA SDPWS Table 4.3.3.5

Wind Force: vee := $\frac{\frac{12 \cdot 1_{1} \cdot W}{L_{t}} \cdot \frac{L_{1} + L_{2}}{2}}{r}$

$$\rho := 1.0$$

Seismic Force:
$$\rho := 1.0$$

$$E_{ee} := \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1 + L_2}{2}}{L_{ee}}$$

$$vee = 124.21 \text{ ft}^{-1} \cdot lb$$

vee = 124.21 ft⁻¹·lb
$$\frac{\text{vee}}{C_0}$$
 = 124.21 ft⁻¹·lb

$$E_{ee} = 174.29 \, \text{ft}^{-1} \cdot 18$$

$$E_{ee} = 174.29 \, \text{ft}^{-1} \cdot \text{lb}$$
 $\frac{E_{ee}}{C_0} = 174.29 \, \text{ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning: Lee := 3.25-ft Plate Height: Pt := 8.5-ft

$$L_{ee} := 3.25 \cdot ft$$

$$W_{ee} := (15 \cdot psf) \cdot 11 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

DLRee :=
$$\frac{W_{ee} \cdot L_{ee}}{2}$$
 DLRee = 406.25 lb

$$DLRee = 406.25 lb$$

Chord Force:

$$CFee_{w} := \frac{vee \cdot L_{ee} \cdot Pt}{C_{o} \cdot L_{ee}}$$

$$CFee_{w} = 1055.81 \text{ lb}$$

$$CFee_{w} = 1055.81 lb$$

CFee_s :=
$$\frac{E_{ee} \cdot L_{ee} \cdot Pt}{C_o \cdot L_{ee}}$$
 CFee_s = 1481.43 lb

$$CFee_s = 1481.43 lb$$

Holdown Force:

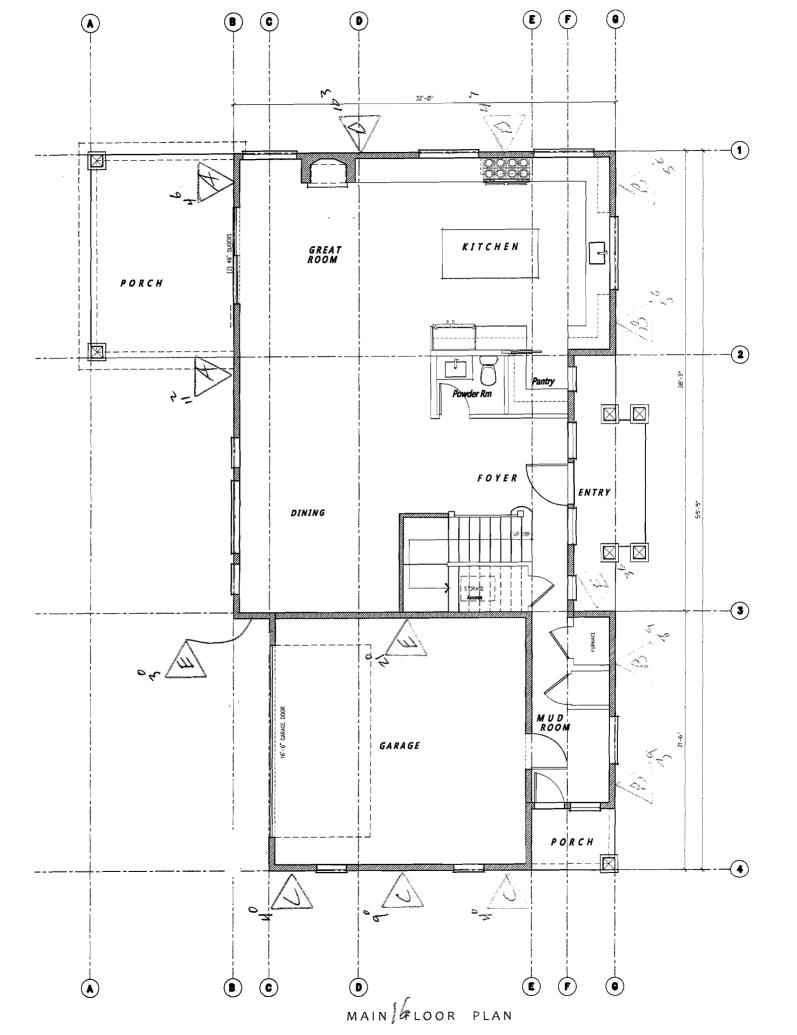
$$HDFee_w := CFee_w - 0.6 \cdot DLRee = 812.06 lb$$

$$HDFee_s := CFee_s - (0.6 - 0.14S_{DS})DLRee = 1301.53 lb$$

Simpson MSTC40

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{N} := 1.6$$


$$Z_{N} := \frac{\left(Z_{N} \cdot C_{D} \cdot C_{o}\right)}{vee} = 1.31 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{ee}} = 0.94 \text{ ft}$$

16d @ 8" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_s := 860 \cdot lb$$
 $C_D := 1.6$ $Z_B := A_s \cdot C_D$ $Z_B = 1376 \, lb$

As:=
$$\frac{\left(Z_{\text{B}} \cdot C_{\text{o}}\right)}{\text{vee}} = 11.08 \,\text{ft}$$
 $\frac{\left(Z_{\text{B}} \cdot C_{\text{o}}\right)}{E_{\text{ee}}} = 7.9 \,\text{ft}$

WALL A:

Story Shear due to Wind:

$$V_{4W} = 6160 \, lb$$

Story Shear due to Seismic: $F_2 = 7801.46 \text{ lb}$

$$F_2 = 7801.46 \text{ lb}$$

Distance between shear walls:

$$L_{\rm ab} := 32 \cdot \text{ft}$$

Shear Wall Length:

La :=
$$\left[11.17 + 4.5 \left(\frac{9}{10} \right) \right]$$
 ft = 15.22 ft

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$

$$\% = \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100 Max Opening Height = 0ft-0in, Therefore C_{∞} := 1.00 per AF&PA SDPWS Table 4.3.3.5

 $\text{Wind Force: } \quad \text{va} := \frac{\text{vaa} \cdot \text{Laa} + \left(\frac{0.6 \text{V}_{4\text{W}} \cdot \frac{\text{L}_1}{2}}{\text{L}_t \cdot \frac{2}{2}}\right)}{\text{Seismic Force: }} \quad \text{Seismic Force: } \quad \text{$\rho_{\text{i}} := 1.0$} \quad \text{$E_{\text{a}} := \frac{\text{E}_{\text{aa}} \cdot \text{Laa} + \left(\rho \cdot \frac{0.7 \text{F}_2}{\text{L}_t} \cdot \frac{\text{L}_1}{2}\right)}{\text{L}_2}}{\text{Seismic Force: }} \quad \text{$\rho_{\text{i}} := 1.0$} \quad \text{$E_{\text{a}} := \frac{\text{E}_{\text{aa}} \cdot \text{Laa} + \left(\rho \cdot \frac{0.7 \text{F}_2}{\text{L}_t} \cdot \frac{\text{L}_1}{2}\right)}{\text{L}_2}}{\text{Seismic Force: }} \quad \text{$\rho_{\text{i}} := 1.0$} \quad \text{ρ

$$E_{a} := \frac{E_{aa} \cdot Laa + \left(\rho \cdot \frac{0.7F_{2}}{L_{t}} \cdot \frac{L_{1}}{2}\right)}{L_{a}}$$

$$va = 231.29 \, ft^{-1} \cdot lb$$

$$va = 231.29 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{va}{C_0} = 231.29 \text{ ft}^{-1} \cdot \text{lb}$

$$E_a = 411.72 \text{ ft}^{-1} \cdot \text{lb}$$

$$E_a = 411.72 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_a}{C_a} = 411.72 \text{ ft}^{-1} \cdot \text{lb}$

P1-3: 7/16" Sheathing w/ 8d nails @ 4" O.C.

Wind Capacity = 686 plf Seismic Capacity = 490 plf

Dead Load Resisting Overturning:

$$L_a := 4.5 \cdot ft$$

 $L_a := 4.5 \cdot \text{ft}$ Plate Height: $P_t := 10 \cdot \text{ft}$

$$W_a := (15 \cdot psf) \cdot 6 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 1ft$$

$$DLRa := \frac{W_a L_a}{2}$$
 DLRa = 450 lb

Chord Force:

$$CFa_{w} := \frac{va \cdot L_{a} \cdot Pt}{C_{o} \cdot L_{a}}$$

$$CFa_{w} = 2312.93 \text{ lb}$$

$$CFa_{w} = 2312.93 \text{ lb}$$

$$CFa_w + CFaa_w = 3052.42 lb$$

$$CFa_s := \frac{E_a \cdot L_a \cdot Pt}{C_a \cdot Pt}$$

$$CFa_s := \frac{E_a \cdot L_a \cdot Pt}{C_o \cdot L_a}$$

$$CFa_s = 4117.19 \text{ lb}$$

 $CFa_s + CFaa_s = 5680.74 lb$

Holdown Force:

$$HDFa_w := CFa_w - 0.6 \cdot DLRa = 2042.93 lb$$

$$HDFa_{w} + HDFaa_{w} = 2417.86 lb$$

$$HDFa_s := CFa_s - (0.6 - 0.14S_{DS}) \cdot DLRa = 3917.91 lb$$

$$HDFa_s + HDFaa_s = 5212.41 lb$$

Simpson HDU5 w/ SB5/8x24 anchors

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{D} := 1.6$$

$$B_{D} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{va} = 0.71 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{a}} = 0.4 \text{ ft}$$

16d @ 4" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{S} := 860 \cdot lb \qquad C_{D} := 1.6 \qquad Z_{B} := A_{S} \cdot C_{D} \qquad Z_{B} = 1376 \, lb$$

$$(Z_{D} : C_{S}) \qquad (Z_{D} : C_{S})$$

$$As:=\frac{\left(Z_{B}\cdot C_{o}\right)}{va}=5.95 \, ft \qquad \frac{\left(Z_{B}\cdot C_{o}\right)}{E_{a}}=3.34 \, ft$$

5/8" A.B. @ 36" o.c.

WALL B:

Story Shear due to Wind:

$$V_{4W} = 6160 \, lb$$

Story Shear due to Seismic: $F_2 = 7801.46 \text{ lb}$

$$F_2 = 7801.46 \, lb$$

Bldg Width in direction of Load: $L_{\text{MA}} := 32 \cdot \text{ft}$

$$L_{t} = 32 \cdot ft$$

Distance between shear walls: Lab:= 32·ft

$$L_{\rm a} := 32 \cdot \text{ft}$$

Shear Wall Length:

Lb :=
$$\left[3.75 \left(\frac{7.5}{10} \right) + 8.75 + 2.5.5 \right]$$
 ft = 22.56 ft

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

PROJECT: Chase's Corner - Lot 2

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$ % = 100 Max Opening Height = 0ft-0in, Therefore C := 1.00 per AF&PA SDPWS Table 4.3.3.5

 $\text{Wind Force: } \text{vb} := \frac{\text{vbb} \cdot \text{Lbb} + \left(\frac{0.6 \text{V}_{4\text{W}}}{\text{L}_{t}} \cdot \frac{\text{L}_{1}}{2}\right)}{\text{Seismic Force: }} \\ \text{Seismic Force: } \text{$\rho:= \frac{E_{bb} \cdot \text{Lbb} + \left(\rho \cdot \frac{0.7 \text{F}_{2}}{\text{L}_{t}} \cdot \frac{\text{L}_{1}}{2}\right)}{\text{Lb}}$

$$E_b := \frac{E_{bb} \cdot Lbb + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Ib}$$

$$vb = 156.02 \text{ ft}^{-1} \cdot lb$$
 $\frac{vb}{C} = 156.02 \text{ ft}^{-1} \cdot lb$

$$\frac{\text{vb}}{\text{C}_{2}} = 156.02 \,\text{ft}^{-1} \cdot \text{lb}$$

$$E_b = 277.73 \, \text{ft}^{-1} \cdot \text{lb}$$

$$E_b = 277.73 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_b}{C_0} = 277.73 \text{ ft}^{-1} \cdot \text{lb}$

P1-4: 7/16" Sheathing w/ 8d nails @ 4" O.C.

Wind Capacity = 532 plf Seismic Capacity = 380 plf

Dead Load Resisting Overturning:

$$L_b := 3.75 \cdot ft$$

 $L_b := 3.75 \cdot ft$ Plate Height: $Pt := 10 \cdot ft$

$$W_b := (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 1ft$$

DLRb :=
$$\frac{W_b \cdot L_b}{2}$$
 DLRb = 206.25 lb

Chord Force:

$$CFb_{w} := \frac{vb \cdot L_{b} \cdot Pt}{C_{o} \cdot L_{b}}$$

$$CFb_{w} = 1560.24 \text{ lb}$$

$$CFb_{w} = 1560.24 \text{ lb}$$

$$CFb_s := \frac{E_b \cdot L_b \cdot Pt}{C_0 \cdot L_b}$$

$$CFb_s = 2777.33 \text{ lb}$$

$$CFb_s = 2777.33 lb$$

Holdown Force:

$$HDFb_w := CFb_w - 0.6 \cdot DLRb = 1436.49 lb$$

$$HDFb_w + HDFbb_w = 2102.14 lb$$

$$HDFb_s := CFb_s - (0.6 - 0.14S_{DS}) \cdot DLRb = 2686 lb$$

$$HDFb_s + HDFbb_s = 4215.95 lb$$

Simpson HDU4 w/ SB5/8x24 Anchor

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$R_{NN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{vb} = 1.05 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{b}} = 0.59 \text{ ft}$$

16d @ 6" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_s := 860 \cdot lb$$
 $C_D := 1.6$ $Z_{B_A} := A_s \cdot C_D$ $Z_B = 1376 \, lb$

$$Z_{B_A} = 1.6$$
 $Z_{B_A} = A_s$

$$Z_{\rm B} = 1376 \, \rm lb$$

As:
$$=\frac{\left(Z_{\text{B}}\cdot C_{\text{o}}\right)}{vb} = 8.82 \,\text{ft}$$
 $\frac{\left(Z_{\text{B}}\cdot C_{\text{o}}\right)}{E_{\text{b}}} = 4.95 \,\text{ft}$

$$\frac{\left(Z_{\rm B}\cdot C_{\rm o}\right)}{E_{\rm b}} = 4.95 \, {\rm ft}$$

5/8" A.B. @ 60" o.c.

WALL C:

Story Shear due to Wind:

$$V_{2W} = 9840 \, lb$$

Story Shear due to Seismic:

$$F_2 = 7801.46 \, lb$$

Bldg Width in direction of Load: $L_{th} = 60 \cdot \text{ft}$

$$L_t := 60 \cdot ft$$

Distance between shear walls:

$$L_{h} := 21.5 \cdot \text{ft}$$

Shear Wall Length:

Lc :=
$$\left[2.4\left(\frac{8}{10}\right) + 9\right]$$
ft = 15.4 ft

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$ % = 100 Max Opening Height = 0ft-0in, Therefore \bigcirc := 1.00 per AF&PA SDPWS Table 4.3.3.5

$$\text{Wind Force: } \ vc := \frac{\text{vcc·Lcc} + \left(\frac{0.6 V_{2W}}{L_t} \cdot \frac{L_1}{2}\right)}{\text{I.c.}} \qquad \text{Seismic Force: } \ \rho_c := 1.0 \qquad E_c := \frac{E_{cc} \cdot \text{Lcc} + \left(\rho \cdot \frac{0.7 F_2}{L_t} \cdot \frac{L_1}{2}\right)}{\text{I.c.}}$$

$$= \frac{E_{cc} \cdot Lcc + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{L_c}$$

$$vc = 127.32 \, ft^{-1} \cdot lb$$

$$vc = 127.32 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{vc}{C_0} = 127.32 \text{ ft}^{-1} \cdot \text{lb}$

$$E_c = 145.81 \text{ ft}^{-1} \cdot \text{lb}$$

$$E_c = 145.81 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_c}{C_0} = 145.81 \text{ ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

$$L_c := 4 \cdot ft$$

 $L_c := 4 \cdot \text{ft}$ Plate Height: $Pt := 10 \cdot \text{ft}$

$$W_c := (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 1ft$$

$$DLRc := \frac{W_c \cdot L_c}{2}$$

$$DLRc = 220 lb$$

Chord Force:

$$CFc_w := \frac{vc \cdot L_c \cdot Pt}{C_o \cdot L_c}$$

$$CFc_w = 1273.25 \text{ lb}$$

$$CFc_{w} = 1273.25 \text{ lb}$$

$$CFc_w + CFcc_w = 1716.15 lb$$

$$CFc_s := \frac{E_c \cdot L_c \cdot Pt}{C_s \cdot L_c}$$

$$CFc_s = 1458.08 \text{ lb}$$

$$CFc_s = 1458.08 \, lb$$

$$CFc_s + CFcc_s = 2079.52 lb$$

Holdown Force:

$$HDFc_w := CFc_w - 0.6 \cdot DLRc = 1141.25 lb$$

$$HDFc_w + HDFcc_w = 1221.9 lb$$

$$HDFc_s := CFc_s - (0.6 - 0.14S_{DS}) \cdot DLRc = 1360.66 lb$$

$$HDFc_s + HDFcc_s = 1714.74 lb$$

Simpson LSTHD8

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{NN} := 1.6$$

$$R_{NN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{v_{C}} = 1.28 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{c}} = 1.12 \text{ ft}$$

16d @ 12" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{\text{s}} := 860 \cdot \text{lb} \qquad C_{\text{D}} := 1.6 \qquad Z_{\text{B}} := A_{\text{s}} \cdot C_{\text{D}} \qquad Z_{\text{B}} = 1376 \, \text{lb}$$

$$A_{\text{S}} := \frac{\left(Z_{\text{B}} \cdot C_{\text{o}}\right)}{\text{vc}} = 10.81 \, \text{ft} \qquad \frac{\left(Z_{\text{B}} \cdot C_{\text{o}}\right)}{E_{\text{C}}} = 9.44 \, \text{ft}$$

3206 50th Street Ct NW, Ste 210-B Gig Harbor, WA 98335

PROJECT : Chase's Corner - Lot 2

Phone: 253-858-3248

Email: myengineer@centurytel.net

WALL D:

Story Shear due to Wind:

$$V_{2W} = 9840 \, lb$$

Story Shear due to Seismic:

$$F_2 = 7801.46 \text{ lb}$$

Bldg Width in direction of Load: L_{tt}:= 60·ft

$$L_{\rm L} := 60 \cdot {\rm ft}$$

Distance between shear walls:

$$L_{\rm ab} := 38.5 \cdot \text{ft}$$

Shear Wall Length: Ld := $4.58 \left(\frac{9.17}{10} \right) + 10.25 \text{ ft} = 14.45 \text{ ft}$

Ld :=
$$\left[4.58\left(\frac{9.17}{10}\right) + 10.25\right]$$
ft = 14.4

Percent full height sheathing:
$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

$$\mbox{Wind Force:} \quad \mbox{vd} := \frac{\mbox{vdd} \cdot \mbox{Ldd} + \left(\frac{0.6 \mbox{V}_{2W}}{\mbox{L}_t} \cdot \frac{\mbox{L}_1}{2} \right)}{\mbox{Ld}}$$

Seismic Force:
$$\rho:=1.0 \qquad E_{d}:=\frac{E_{dd}\cdot Ldd+\left(\rho\cdot\frac{0.7F_{2}}{L_{t}}\cdot\frac{L_{1}}{2}\right)}{Ld}$$

$$vd = 242.99 \, ft^{-1} \cdot lb$$

$$vd = 242.99 \text{ ft}^{-1} \cdot lb$$
 $\frac{vd}{C_2} = 242.99 \text{ ft}^{-1} \cdot lb$

$$E_d = 278.27 \, \text{ft}^{-1} \cdot \text{lb}$$

$$E_d = 278.27 \,\text{ft}^{-1} \cdot \text{lb}$$
 $\frac{E_d}{C_0} = 278.27 \,\text{ft}^{-1} \cdot \text{lb}$

P1-4: 7/16" Sheathing w/ 8d nails @ 4" O.C.

Wind Capacity = 532 plf Seismic Capacity = 380 plf

Dead Load Resisting Overturning:

$$L_d := 4.58 \cdot ft$$

$$L_d := 4.58 \cdot \text{ft}$$
 Plate Height: $Pt := 10 \cdot \text{ft}$

$$W_d := (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 8.5ft$$

$$DLRd := \frac{W_d \cdot L_d}{2}$$
 DLRd = 423.65 lb

$$DLRd = 423.65 lb$$

Chord Force:

$$CFd_w := \frac{vd \cdot L_d \cdot Pt}{C_{c} \cdot L_{c}}$$

$$CFd_w = 2429.92 lb$$

$$CFd_s := \frac{E_d \cdot L_d \cdot Pt}{C_s \cdot L_d}$$

$$CFd_s = 2782.66 lb$$

$$CFd_w + CFdd_w = 2983.24 lb$$

$$CFd_s + CFdd_s = 3559.04 \text{ lb}$$

Holdown Force:

$$HDFd_w := CFd_w - 0.6DLRd = 2175.73 lb$$

$$HDFd_s := CFd_s - (0.6 - 0.14S_{DS}) \cdot DLRd = 2595.06 lb$$

$$HDFd_w + HDFdd_w = 2382.55 lb$$

$$HDFd_s + HDFdd_s = 3115.7 lb$$

Simpson STHD14

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{D} := 1.6$$

$$Z_{NN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{vd} = 0.67 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{d}} = 0.59 \text{ ft}$$

16d @ 6" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

As:=
$$\frac{(Z_B \cdot C_o)}{vd}$$
 = 5.66 ft $\frac{(Z_B \cdot C_o)}{E_d}$ = 4.94 ft

5/8" A.B. @ 60" o.c.

WALL E:

Story Shear due to Wind:

$$V_{2W} = 9840 \, lb$$

Story Shear due to Seismic: $F_2 = 7801.46 \text{ lb}$

$$F_2 = 7801.46 \, lb$$

Bldg Width in direction of Load:

Distance between shear walls: $\underline{L}_{\downarrow\downarrow} = 21.5 \cdot \text{ft}$ $\underline{L}_{2} = 38.5 \text{ft}$

$$L_{\rm h} := 21.5 \cdot \text{ft}$$

$$L_2 := 38.5 \text{ ft}$$

Shear Wall Length: Le :=
$$\left[21 + 3 + 3.5\left(\frac{7}{10}\right)\right]$$
 ft = 26.45 ft

PROJECT : Chase's Corner - Lot 2

Percent full height sheathing: $\% := \left(\frac{24 \cdot \text{ft}}{24.5 \cdot \text{ft}}\right) \cdot 100$ % = 97.96 Max Opening Height = 10ft-0in, Therefore $C_{\infty} := 0.95$ per AF&PA SDPWS Table 4.3.3.5

$$\text{Wind Force: } ve := \frac{\text{vee-Lee} + \left(\frac{0.6 V_{2W}}{L_t} \cdot \frac{L_1 + L_2}{2}\right)}{L_t} \\ \text{Seismic Force: } \rho := 1.0 \\ \text{E}_e := \frac{E_{ee} \cdot Lee + \left(\rho \cdot \frac{0.7 F_2}{L_t} \cdot \frac{L_1 + L_2}{2}\right)}{L_t} \\ \text{Seismic Force: } \rho := 1.0 \\ \text{Seismic Force: } \rho$$

$$E_{e} := \frac{E_{ee} \cdot Lee + \left(\rho \cdot \frac{0.7F_{2}}{L_{t}} \cdot \frac{L_{1} + L_{2}}{2}\right)}{Le}$$

$$ve = 206.88 \, \text{ft}^{-1} \cdot \text{lb}$$

$$\frac{\text{ve}}{\text{C}_{0}} = 217.77 \,\text{ft}^{-1} \cdot \text{lb}$$

$$E_e = 236.91 \text{ ft}^{-1} \cdot \text{lb}$$

$$ve = 206.88 \text{ ft}^{-1} \cdot lb$$
 $\frac{ve}{C_0} = 217.77 \text{ ft}^{-1} \cdot lb$ $E_e = 236.91 \text{ ft}^{-1} \cdot lb$ $\frac{E_e}{C_0} = 249.38 \text{ ft}^{-1} \cdot lb$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

<u>Dead Load Resisting Overturning:</u> $L_e := 3.5 \cdot ft$ Plate Height: $Pt := 10 \cdot ft$

$$L_e := 3.5 \cdot ft$$

$$W_e \coloneqq (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 11ft$$

DLRe :=
$$\frac{W_e \cdot L_e}{2}$$
 DLRe = 367.5 lb

$$DLRe = 367.5 lb$$

Chord Force:

$$CFe_w := \frac{ve \cdot L_e \cdot Pt}{C_o \cdot L_e}$$

$$CFe_w = 2177.69 \text{ lb}$$

$$CFe_{w} = 2177.69 \, lb$$

$$CFe_w + CFee_w = 3233.51 lb$$

$$CFe_s := \frac{E_e \cdot L_e \cdot Pt}{C \cdot L}$$

$$CFe_s := \frac{E_e \cdot L_e \cdot Pt}{C_o \cdot L_e}$$

$$CFe_s = 2493.82 \text{ lb}$$

$$CFe_s + CFee_s = 3975.25 \text{ lb}$$

Holdown Force:

$$HDFe_{w} := CFe_{w} - 0.6 \cdot DLRe = 1957.19 lb$$

$$HDFe_s := CFe_s - (0.6 - 0.14S_{DS}) \cdot DLRe = 2331.09 lb$$

Simpson HDU2 w/ SSTB16 anchor

$$HDFe_w + HDFee_w = 2769.26 lb$$

$$HDFe_s + HDFee_s = 3632.62 lb$$

Simpson HDU4 w/ SB5/8x24 anchor

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$B_{RN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{ve} = 0.75 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{e}} = 0.65 \text{ ft}$$

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{S} := 860 \cdot lb \qquad C_{D} := 1.6 \qquad Z_{B_{A}} := A_{s} \cdot C_{D} \qquad Z_{B} = 1376 \, lb$$

$$A_{S} := \frac{\left(Z_{B} \cdot C_{o}\right)}{ve} = 6.32 \, ft \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{E_{e}} = 5.52 \, ft$$

5/8" A.B. @ 60" o.c.

Diapragm Shear Check:

Assume 2x HF Roof Framing, 7/16" Sheathing w/ 8d (0.131" x 2.5") nails, 6" o.c Edge nailing

Unblocked Diapraghm Case 1 Wind Capacity = 300 plf & Seismic Capacity = 214 plf

Unblocked Diapraghm Case 2-6 Wind Capacity = 221 plf & Seismic Capacity = 158 plf

Wall Lines AA:

Wall Lines F.F.

$$vaa \cdot \frac{Laa}{39ft} = 42.88 \text{ ft}^{-1} \cdot \text{lb}$$
 $E_{aa} \cdot \frac{Laa}{39ft} = 90.66 \text{ ft}^{-1} \cdot \text{lb}$

$$E_{aa} \cdot \frac{Laa}{39ft} = 90.66 \, \text{ft}^{-1} \cdot \text{lb}$$

$$vdd \cdot \frac{Ldd}{32ft} = 50.53 \text{ ft}^{-1} \cdot \text{lb}$$
 $E_{dd} \cdot \frac{Ldd}{32ft} = 70.9 \text{ ft}^{-1} \cdot \text{lb}$

$$E_{dd} \cdot \frac{Ldd}{32ft} = 70.9 ft^{-1} \cdot lb$$

Wall Lines BB:

$$vbb \cdot \frac{Lbb}{59.25ft} = 28.22 \text{ ft}^{-1} \cdot lb$$
 $E_{bb} \cdot \frac{Lbb}{59.25ft} = 59.68 \text{ ft}^{-1} \cdot lb$ $vee \cdot \frac{Lee}{32ft} = 78.75 \text{ ft}^{-1} \cdot lb$ $E_{ee} \cdot \frac{Lee}{32ft} = 110.5 \text{ ft}^{-1} \cdot lb$

$$\text{vee} \cdot \frac{\text{Lee}}{22.9} = 78.75 \,\text{ft}^{-1} \cdot \text{lb}$$

$$E_{ee} \cdot \frac{Lee}{32ft} = 110.5 ft^{-1} \cdot lb$$

Wall Lines CC:

$$\operatorname{vcc} \cdot \frac{\operatorname{Lcc}}{21 \, \text{ft}} = 43 \, \text{ft}^{-1} \cdot \text{lb}$$

$$\operatorname{vcc} \cdot \frac{\operatorname{Lcc}}{21 \operatorname{ft}} = 43 \operatorname{ft}^{-1} \cdot \operatorname{lb}$$
 $\operatorname{E}_{\operatorname{cc}} \cdot \frac{\operatorname{Lcc}}{21 \operatorname{ft}} = 60.33 \operatorname{ft}^{-1} \cdot \operatorname{lb}$

$$\frac{\text{va} \cdot \text{La} - \text{vaa} \cdot \text{Laa}}{300} = 47.38 \,\text{ft}^{-1} \cdot \text{lt}$$

$$\frac{\text{va} \cdot \text{La} - \text{vaa} \cdot \text{Laa}}{39 \text{ft}} = 47.38 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{a}} \cdot \text{La} - \text{E}_{\text{aa}} \cdot \text{Laa}}{39 \text{ft}} = 70.01 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{va} \cdot \text{La}}{39 \text{ft}} = 90.26 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{a}} \cdot \text{La}}{39 \text{ft}} = 160.68 \text{ ft}^{-1} \cdot \text{lb}$$

$$\frac{\text{va·La}}{39\text{ft}} = 90.26 \,\text{ft}^{-1} \cdot \text{lb}$$

$$\frac{E_a \cdot La}{39 \text{ft}} = 160.68 \, \text{ft}^{-1} \cdot \text{II}$$

Wall Lines B:

$$\frac{\text{vb} \cdot \text{Lb} - \text{vbb} \cdot \text{Lbb}}{59.25 \text{ft}} = 31.19 \text{ ft}^{-1} \cdot \text{l}$$

$$\frac{\text{vb} \cdot \text{Lb} - \text{vbb} \cdot \text{Lbb}}{59.25 \text{ft}} = 31.19 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{b}} \cdot \text{Lb} - \text{E}_{\text{bb}} \cdot \text{Lbb}}{59.25 \text{ft}} = 46.08 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{vb} \cdot \text{Lb}}{59.25 \text{ft}} = 59.41 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{b}} \cdot \text{Lb}}{59.25 \text{ft}} = 105.76 \text{ ft}^{-1} \cdot \text{lb}$$

$$\frac{\text{vb} \cdot \text{Lb}}{59.25 \text{ft}} = 59.41 \text{ ft}^{-1} \cdot \text{lb}$$

$$\frac{E_b \cdot Lb}{59.25 ft} = 105.76 ft^{-1} \cdot lb$$

Wall Lines C:

$$\frac{\text{vc-Lc} - \text{vcc-Lcc}}{29\text{ft}} = 36.48 \,\text{ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{c}} \cdot \text{Lc} - \text{E}_{\text{cc}} \cdot \text{Lcc}}{29\text{ft}} = 33.74 \,\text{ft}^{-1} \cdot \text{lb} \qquad \frac{\text{vc-Lc}}{29\text{ft}} = 67.61 \,\text{ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{c}} \cdot \text{Lc}}{29\text{ft}} = 77.43 \,\text{ft}^{-1} \cdot \text{lb}$$

$$\frac{E_c \cdot Lc - E_{cc} \cdot Lcc}{29ft} = 33.74 \, ft^{-1} \cdot lt$$

$$\frac{\text{vc-Lc}}{29\text{ft}} = 67.61 \text{ ft}^{-1} \cdot \text{lb}$$

$$\frac{E_c \cdot Lc}{29ft} = 77.43 \, \text{ft}^{-1} \cdot \text{lb}$$

Wall Lines D:

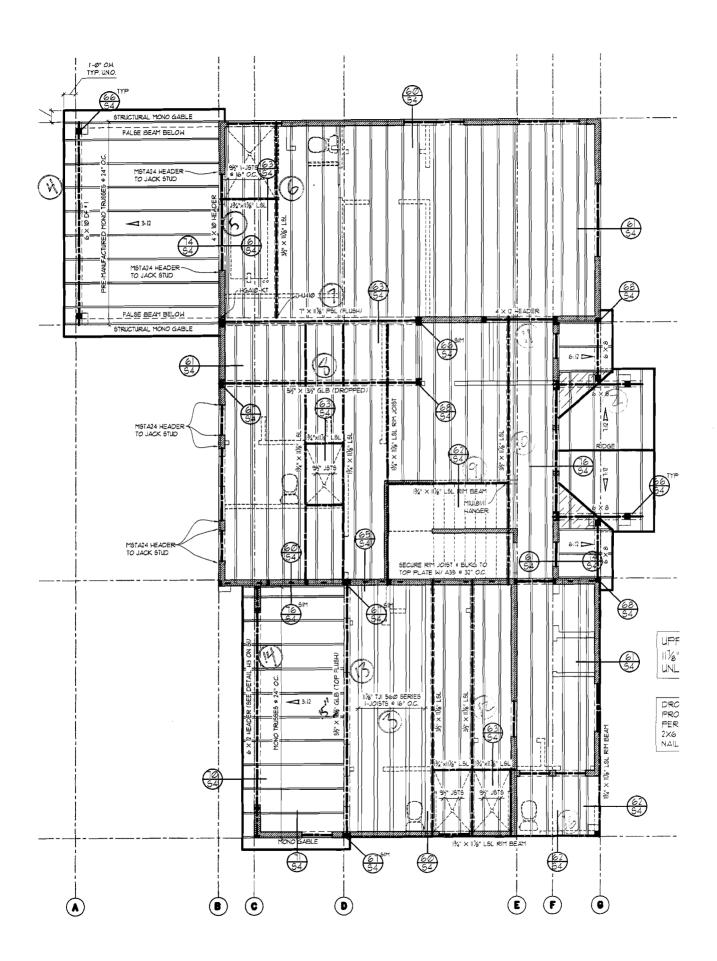
$$\frac{\text{vd} \cdot \text{Ld} - \text{vdd} \cdot \text{Ldd}}{32 \text{ft}} = 59.19 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{d}} \cdot \text{Ld} - \text{E}_{\text{dd}} \cdot \text{Ldd}}{32 \text{ft}} = 54.75 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{vd} \cdot \text{Ld}}{32 \text{ft}} = 109.72 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{d}} \cdot \text{Ld}}{32 \text{ft}} = 125.65 \text{ ft}^{-1} \cdot \text{lb}$$

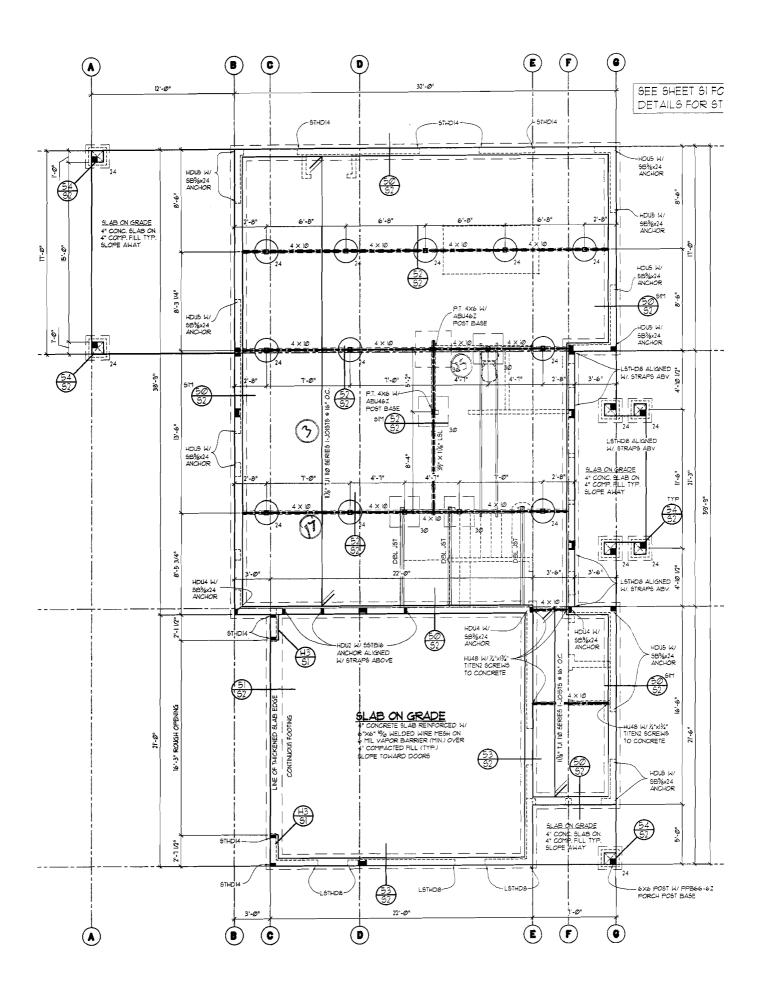
$$\frac{E_{d} \cdot Ld - E_{dd} \cdot Ldd}{32 \text{ ft}} = 54.75 \text{ ft}^{-1} \cdot 18$$

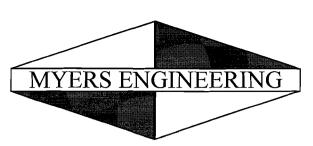
$$\frac{\text{vd·Ld}}{32\text{ft}} = 109.72 \,\text{ft}^{-1} \cdot \text{lb}$$

$$\frac{E_d \cdot Ld}{32ft} = 125.65 \, \text{ft}^{-1} \cdot \text{lb}$$

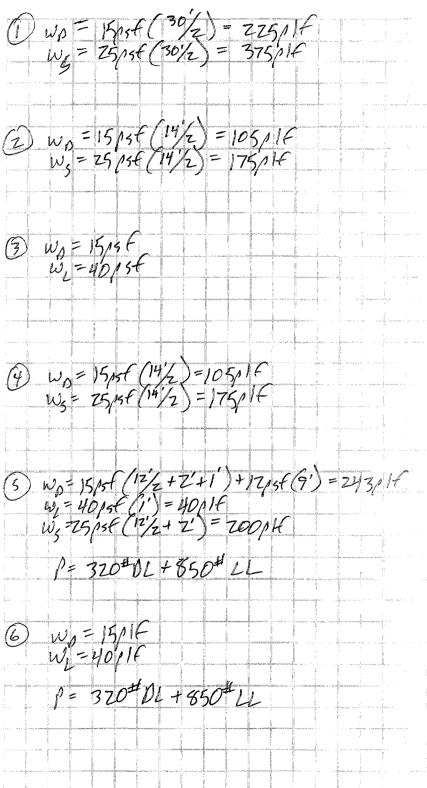
Wall Line E:

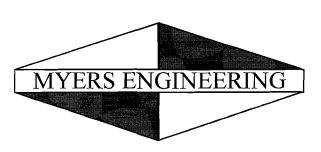

$$\frac{\text{ve-Le - vee-Lee}}{32\text{ft}} = 92.25 \text{ ft}^{-1} \cdot \text{lb}$$

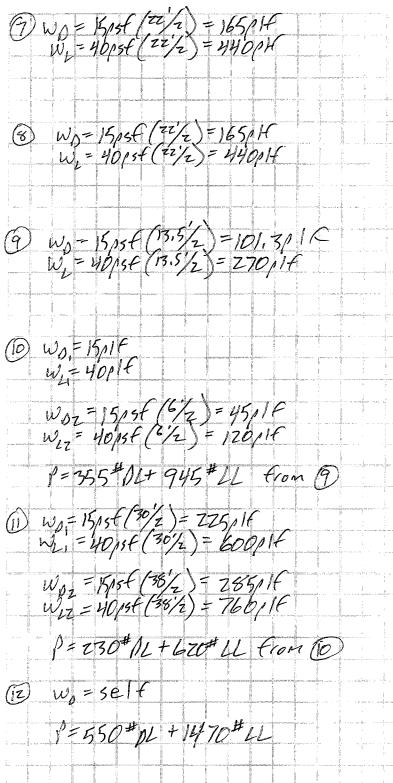

$$\frac{\text{ve-Le - vee-Lee}}{32\text{ft}} = 92.25 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{e}} \cdot \text{Le - E}_{\text{ee}} \cdot \text{Lee}}{32\text{ft}} = 85.33 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{ve-Le}}{32\text{ft}} = 171 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{e}} \cdot \text{Le}}{32\text{ft}} = 195.82 \text{ ft}^{-1} \cdot \text{lb}$$


$$\frac{\text{ve-Le}}{32\text{ft}} = 171 \text{ ft}^{-1} \cdot \text{lb}$$

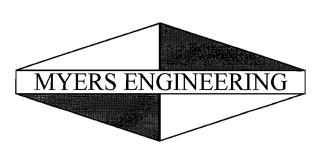
$$\frac{E_e \cdot Le}{32 \text{ft}} = 195.82 \,\text{ft}^{-1} \cdot \text{lt}$$




Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net


				 -
	·			
	1 m	1		4
		<u>&</u>		
		e go offer	OF#	
	سند .	1 とら	UF TO	
			•	
:				\$1.7
				ř
				
	14	<u> </u>	/ 2	
	فتتا		$f \in \mathcal{L}$	5 : 7
				ı i
		\$6 p		
	/	V /2 /	81 Haz	
		7 - D	2 1 mg ;	
				1.5
				- "" .
				
			_1 _1	
/		-	~ /	. /
		一関り 4	/	
		T # 4 .	wi	
1.71	and the same of th		. 1	77.
11/2	77	-17/1	216	-1 / 7
1475	- / ⊍	ノキ フカシ	19 10	08 6
	_			
				É
1.	112 6	1 1-41	5 4	- h
1 797-		Lan. 1 3	7) 7/2	18 A
	*	, ,		1
			1 2 3 2	
			1 1 2 1	الجرستا
			1 1 1	
		16/	: 2 2 7	
		161		
	·	161		
	£34.73	161 00F		
	£ 34.73	161 00F		
	EXTS	161 00F	=	
	£.X.73	161 0 0F		
	£ 34.73	161 0 0F		2
	É X.73	DUF		
	É X.73	DUF		
	É X.73	DUF		
	É X.73	DUF		
	É X.73	DUF		
	É X.73	DUF		
	É X.73	DUF		
	É X.73	DUF		
	É X.73	DUF		
	E X / 1	5		
	E X / 1	5		
	E X / 1	5		
	E X / 1	DUF		
	E X / 1	5		
	E X / 1	5		
	E X / 1	5		
	E X / 1	5		
	E X / 1	5		
	E X / 1	5		
	E X 1 2	5		
	E X 1 2	5		
	E X 1 2	5		
	E X 1 2	5		
	E X 1 2	5 VF		
	E X 1 2	5 VF		
	E X 1 2	5		
	E X 1 2	5 VF		
	E X 1 2	5 VF		
	E X 1 2	5 VF		
	E X 1 2	5 VF		
	E X 1 2	5 VF		
	E X 1 2	5 VF		
	E X 1 2	5 VF		
	E X 1 2	5 VF		
	E X 1 2	5 VF		

JOB Chases Lt Z


ZE

Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net

-	\mathcal{C}						
	;						
		× 1/2 /			3	\ :	_
125	:	·····	1,	. /		\	Z
			ت کا		. ye		
			- 12 C	. 32	. ئېر د		
	- £.	<i>}~ } }</i>	15	()			
			:				
-	-			- agranua			_ ,
· E	- 1		 -	-1		- '	Ž
			16				
		- 4 C		100		^	
		5%	J		61	44	
		200		- J		- () :	
					1		
					r	:	
						_ :	
		-		, , ,		 ang	
4	<u></u>		:	7.		ن 	
			;7				
	g leg	/ex	17/	4	ZJ		
	1	74.8	M_{i}^{*}	<u> </u>	フニー		
					:	- 1	
				-			
				. 95,		i	
				MI		:	
		3	Ď.	J.	27	-	
مسر د د			55:				
1	······			P1			
			, a	7			
	11	1	77		11		
	1	ZXI	1/8	: 4	ライヤ	- ·	
r					1		
			4. 4.				
		Z : :	- <u>-</u> -			-	
	,	- · · · · · · ·	1	e page	1	1	
	1	Z 2	1		i	بل	i.
				11		-	-
			: "				
						-	
			4%	12	وستزارا	= Z	Carl Million
			\$ 1	· —	e- 7		
							:
			1.		}		
		1 4	E				
		<i>} 1</i>		<u> </u>	6)	e	
<u>_</u>				1		-2	
				1			
				7/ .	1 <	1	
	•	7/7		15.	200		
		-/ -				1	:
			:				

Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net

(3) WD = 15psf (8/2+1+2) +12psf (9) = 213plf W, = 4011f	
$w'_{1} = 4011f$ $w'_{2} = 7605f(z' + 6/z) = 15004f$	5/2×15 6-23
(H) Wp = 15/2 + (10/2) = 75/2 1 + 125/14	16,25 6x12
(5) $w_0 = 15/5 \left(\frac{21.5}{2} + \frac{30}{2}\right) = \frac{386.37}{100} = \frac{386.37}{100} = \frac{1030}{100}$	5 7 X/C
(6) $w_{3} = 19.15 \left(\frac{51}{2} + \frac{23.51}{2} \right) + 17.19 \left(\frac{9}{9} \right) = 321, 8 \text{ p.f.}$ $w_{4} = 40.15 \left(\frac{51}{2} \right) = 00.11 $ $w_{5} = 25.15 \left(\frac{23.5}{2} \right) = 293, 8 \text{ p.f.}$	13/12/17/8/252
$ \begin{array}{ll} (17) & w_3 = 15/5 + (21.5/2) = 161.3/1 + \\ w_1 = 40/4 + (21.5/2) = 430/4 \end{array} $	7:07 5,000
FOR RKK/RFA JOB Chase HZ	DATE 5-Z-Z-Z BY

Z8

Project Title:

Chases Corner - Lot 2 Mark Myers, P.E.

Engineer:
Project ID:
Project Descr:

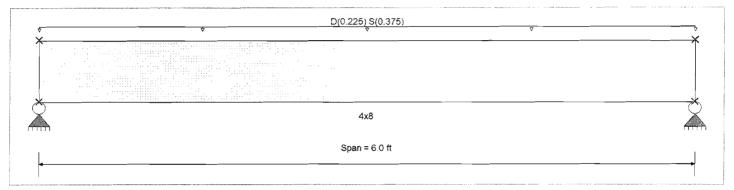
Wood Beam

LIC#: KW-06015659, Build:20.21.10.30

MYERS ENGINEERING

Project File: Chases Lot 2.ec6 (c) ENERCALC INC 1983-2021

DESCRIPTION: 1. Upper Roof Header


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design		900.0 psi	E : Modulus of Elasticity		
Load Combination : IBC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0 ksi	
	Fc - Prli	1,350.0 psi	Eminbend - xx	580.0ksi	
Wood Species : DouglasFir-Larch Wood Grade : No.2	Fc - Perp Fv	625.0 psi 180.0 psi			
Beam Bracing : Completely Unbraced	Ft	575.0 psi	Density	31.210 pcf	

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.2250, S = 0.3750, Tributary Width = 1.0 ft, (Roof Trusses)

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0. 79 3.1 4x8		hear Stress Ratio used for this span	=	0.413:1 4x8
fb: Actual	=	1,056.70 psi		fv: Actual	=	85.43 psi
Fb: Allowable	=	1,333.02 psi		Fv: Allowable	=	207.00 psi
Load Combination		+D+S				+D+S
Location of maximum on span	=	3.000ft Location of maximum on span		=	0.000 ft	
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.062 in Ratio = 0 in Ratio = 0.099 in Ratio = 0 in Ratio =	1164 >=360 0 <360 727 >=240 0 <240	Span: 1 : S Only n/a Span: 1 : +D+S n/a		

Maximum For	ces & S	Stress	es for	Load	Coml	oinati	ons									
Load Combination	tion Max Stress Ratios										Mor	nent Value	Shear Values			
Segment Length	Span #	M	\overline{v}	c_d	$c_{F/V}$	ci	c_r	c_{m}	С _t	C _L	M	fb	F'b		fv	F'v
D Only													0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.379	0.198	0.90	1.300	1.00	1.00	1.00	1.00	0.99	1.01	396.26	1045.62	0.54	32.04	162.00
+D+L					1.300	1.00	1.00	1.00	1.00	0.99			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.341	0.178	1.00	1.300	1.00	1.00	1.00	1.00	0.99	1.01	396.26	1160.76	0.54	32.04	180.00
+D+S					1.300	1.00	1.00	1.00	1.00	0.99			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.793	0.413	1.15	1.300	1.00	1.00	1.00	1.00	0.99	2.70	1,056.70	1333.02	1.45	85.43	207.00
+D+0.750L					1.300	1.00	1.00	1.00	1.00	0.99		,	0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.274	0.142	1.25	1.300	1.00	1.00	1.00	1.00	0.99	1.01	396.26	1447.55	0.54	32.04	225.00
+D+0.750L+0.750S					1.300	1.00	1.00	1.00	1.00	0.99			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.669	0.348	1.15	1.300	1.00	1.00	1.00	1.00	0.99	2.28	891.59	1333.02	1.22	72.08	207.00
+1.140D					1.300	1.00	1.00	1.00	1.00	0.99			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.245	0.127	1.60	1.300	1.00	1.00	1.00	1.00	0.99	1.15	451.74	1846.21	0.62	36.52	288.00
+1.105D+0.750L+0.1	750S				1.300	1.00	1.00	1.00	1.00	0.99			0.00	0.00	0.00	0.00
Length $= 6.0 \text{ ft}$	1	0.505	0.262	1.60	1.300	1.00	1.00	1.00	1.00	0.99	2.38	933.20	1846.21	1.28	75.45	288.00

Project Title: Engineer: Project ID: Project Descr:

Chases Corner - Lot 2 Mark Myers, P.E.

Wood Beam	Vood Beam											Project File: Chases Lot 2.ec6					
LIC# : KW-06015659, E	Build:20.21				MYERS ENGINEERING							(c) ENERCALC INC 1983-2021					
DESCRIPTION	: 1. Up	per Ro	oof He	ader													
Maximum Fore					Comi	oinati	ons										
Load Combination		Max Stre			_	_	_	_	_			ent Value			hear Val		
Segment Length	Span #	М	V	c_{d}	C _{F/V}	Сį	Cr	c_{m}	С _t	CL	М	fb	F'b	V	fv	F'v_	
+0.60D					1.300	1.00	1.00	1.00	1.00	0.99			0.00	0.00	0.00	0.00	
Length = 6.0 ft	1	0.129	0.067	1.60	1.300	1.00	1.00	1.00	1.00	0.99	0.61	237.76	1846.21	0.33	19.22	288.00	
+0.460D					1.300	1.00	1.00	1.00	1.00				0.00	0.00	0.00	0.00	
Length = 6.0 ft	1	0.099	0.051	1.60	1.300	1.00	1.00	1.00	1.00	0.99	0.47	182.28	1846.21	0.25	14.74	288.00	
Overall Maximur	n Defle	ctions	;														
Load Combination		S	pan l	Max. "-	" Defl L	ocatio.	ı in Sp	an	Load C	ombin	ation		Max. "+'	'Defl Lo	cation in	Span	
+D+S			1	0	.0990		3.022	?					0.	0000	0.	000	
Vertical Reaction	ns						Su	pport n	otation	ı:Fari	eft is #1		Values in	KIPS			
Load Combination					Suppor	t 1 Su	oport 2										
Overall MAXimum					1.8	00	1.800										
Overall MINimum					1.1		1.125										
D Only					0.6		0.675										
+D+L					0.6		0.675										
+D+S					1.8		1.800										
+D+0.750L	_				0.6		0.675										
+D+0.750L+0.7508	3				1.5		1.519										
+0.60D					0.4		0.405										
S Only					1.1	25	1.125										

Project Title: Engineer: Chases Corner - Lot 2 Mark Myers, P.E.

Project ID: Project Descr:

Wood Beam
Project File: Chases Lot 2.ec6

LIC#: KW-06015659, Build:20.22.4.26

MYERS ENGINEERING

(c) ENERCALC INC 1983-2022

15.71

15.71

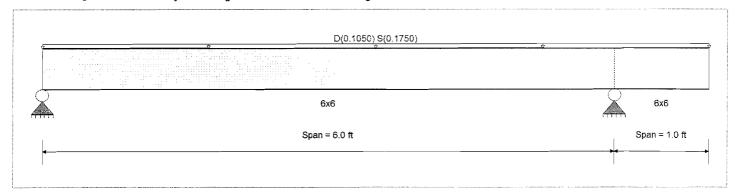
272.00

272.00

0.32

0.06

DESCRIPTION: 2. Header at Covered Porch Roof REV


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	875 psi	E : Modulus of Elasti	city
Load Combination : IBC 2018	Fb ~	875 psi	Ebend- xx	1300 ksi
	Fc - Prll	600 psi	Eminbend - xx	470 ksi
Wood Species : Douglas Fir-Larch	Fc - Perp	625 psi		
Wood Grade : No.2	Fv	170 psi		
	Ft	425 psi	Density	31.21 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsion	al buckling		·	

Applied Loads

Length = 6.0 ft

Length = 1.0 ft

1

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Maximum Forces & Stresses for Load Combinations

0.157

0.019 0.058

0.058

1.60 1.000

1.60 1.000

1.00

1.00

1.00

1.00

Loads on all spans...

Uniform Load on ALL spans: D = 0.0150, S = 0.0250 ksf, Tributary Width = 7.0 ft

DESIGN SUMMARY						Design OK	
Maximum Bending Stress Ratio	=	0.512 1	Maximum S	hear Stress Ratio	=	0.188 : 1	
Section used for this span		6x6	Section	used for this span		6x6	
fb: Actual	=	515.40psi		fv: Actual	=	36.76 psi	
Fb: Allowable	=	1,006.25psi		Fv: Allowable	=	195.50 psi	
Load Combination		+D+S	Load C	ombination		+D+S	
Location of maximum on span	==	2.916ft	Locatio	n of maximum on span	=	5.564 ft	
Span # where maximum occurs	=	Span # 1 Span #		where maximum occurs	=	Span # 1	
Maximum Deflection							
Max Downward Transient Deflect	ion	0.048 in Ratio =	1484 >=360	Span: 1 : S Only			
Max Upward Transient Deflection	1	-0.024 in Ratio =	998 >=360	Span: 2 : S Only			
Max Downward Total Deflection		0.078 in Ratio =	928 >=240	Span: 1 : +D+S			
Max Upward Total Deflection		-0.038 in Ratio =	624 >=240	Span: 2 : +D+S			

Shear Values Load Combination Max Stress Ratios Moment Values Cm Ct CL C_r Segment Length Span # Μ ٧ Cd CF/V Сį М fb F'b ٧ fv F'v D Only 0.00 0.00 0.00 0.00 Length = 6.0 ft 1 0.245 0.090 0.90 1.000 1.00 1.00 1.00 1.00 1.00 0.45 193.28 787.50 0.28 13.78 153.00 Length = 1.0 ft 2 0.029 0.090 0.90 1.000 1.00 1.00 1.00 1.00 1.00 787.50 0.05 22.72 0.06 13.78 153.00 +D+S 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 Length = 6.0 ft 1 0.512 0.188 1.15 1.000 1.00 1.00 1.00 1.19 515.40 1006.25 0.74 36.76 195.50 Length = 1.0 ft 2 0.060 0.188 1.15 1.000 1.00 1.00 1.00 1.00 1.00 60.59 1006.25 0.15 36.76 0.14 195.50 +D+0.750S 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 6.0 ft 1 0.432 0.159 1.15 1.000 1.00 1.00 1.00 1.00 1.00 434.87 1006.25 0.63 31.02 195.50 1.00 1.15 1.000 Length = 1.0 ft 2 0.051 0.159 1.00 1.00 1.00 1.00 1.00 0.12 51.12 1006.25 0.13 31.02 195.50 +1.140D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

1.00

1.00

1.00

1.00 1.00

1.00

0.51

0.06

220.33 1400.00

25.90 1400.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project Title: Engineer: Project ID: Project Descr:

Project File: Chases Lot 2.ec6 **Wood Beam** LIC# : KW-06015659, Build:20.22.4.26 (c) ENERCALC INC 1983-2022 MYERS ENGINEERING

DESCRIPTION: 2. Header at Covered Porch Roof REV

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stre	ess Ratio	os						_	Mom	ent Values	5	S	hear Val	ues
Segment Length	Span #	M	V	c_d	c_{FN}	Сį	c_r	c_{m}	c t	c _L _	М	fb	F'b	V	fv	F'v
+1.105D+0.750S					1.000	1.00	1.00	1.00	1.00	1.00	_		0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.325	0.119	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.05	455.16	1400.00	0.65	32.46	272.00
Length = 1.0 ft	2	0.038	0.119	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.12	53.51	1400.00	0.13	32.46	272.00
+0.60D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.083	0.030	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.27	115.97	1400.00	0.17	8.27	272.00
Length = 1.0 ft	2	0.010	0.030	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.03	13.63	1400.00	0.03	8.27	272.00
+0.460D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.064	0.023	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.21	88.91	1400.00	0.13	6.34	272.00
Length = 1.0 ft	2	0.007	0.023	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.02	10.45	1400.00	0.03	6.34	272.00

Overall	Maximum	Deflections
---------	---------	-------------

Load Combination	Span	Max. "-" Defl Loc	cation in Span	Load Combination	Max. "+" Defl Loc	ation in Span
+D+S	1	0.0776	2.983		0.0000	0.000
	2	0.0000	2.983	+D+S	-0.0384	1.000

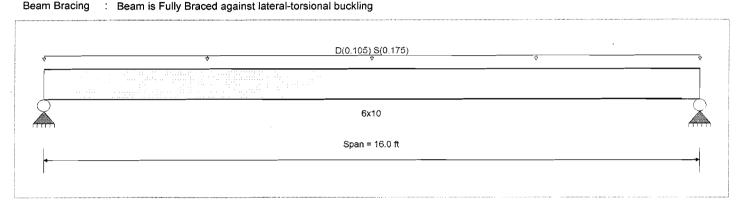
	2	0.0000	2.983	+D+2	-0.0384	1.000
Vertical Reactions			Suppo	rt notation : Far left is #1	Values in KIPS	
Load Combination		Support 1 S	Support 2 Sup	pport 3		
Overall MAXimum		0.817	1.143			
Overall MINimum		0.510	0.715			
D Only		0.306	0.429			
+D+S		0.817	1.143			
+D+0.750S		0.689	0.965			
+0.60D		0.184	0.257			
S Only		0.510	0.715			

Project Title: Engineer: Project ID: Project Descr: Chases Corner - Lot 2 Mark Myers, P.E.

 Wood Beam
 Project File: Chases Lot 2.ec6

 LIC#: KW-06015659, Build:20.21.10.30
 MYERS ENGINEERING
 (c) ENERCALC INC 1983-2021

DESCRIPTION: 4. Main Floor Cov'd Porch Beam


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	Fb +	1,350.0 psi	E : Modulus of Elasticity			
Load Combination IBC 2018	Fb -	1,350.0 psi	Ebend- xx	1,600.0 ksi		
	Fc - Prll	925.0 psi	Eminbend - xx	580.0 ksi		
Wood Species : Douglas Fir-Larch	Fc - Perp	625.0 psi				
Wood Grade : No.1	Fv	170.0 psi				
7700d Grade : 170.1	Ft	675.0 psi	Density	31.210 pcf		
			-	•		

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.1050, S = 0.1750, Tributary Width = 1.0 ft

DESIGN SUMMARY						Design OK 🔐 🚜
Maximum Bending Stress Ratio	=	0.837: 1		hear Stress Ratio	=	0.298 : 1
Section used for this span		6x10	Section	used for this span		6x10
fb: Actual	=	1,299.66psi		fv: Actual	=	58.20 psi
Fb: Allowable	=	1,552.50psi		Fv: Allowable	=	195.50 psi
Load Combination		+D+S	Load C	ombination		+D+S
Location of maximum on span	=	8.000ft	Locatio	n of maximum on span	=	15.241 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection						
Max Downward Transient Deflection	on	0.413 in Ratio =	465 >=360	Span: 1 : S Only		
Max Upward Transient Deflection		0 in Ratio =	0 < 360	n/a		
Max Downward Total Deflection		0.661 in Ratio =	290 >=240	Span: 1 : +D+S		
Max Upward Total Deflection		0 in Ratio =	0 <240	n/a		

Maximum For	ces & S	Stress	es for	Load	Comi	oinati	ons									
Load Combination	ľ	Max Stre	ess Ratio	os							Mor	nent Value	s	S	Shear Val	ues
Segment Length	Span #	M		c_d	$c_{F/V}$	Сį	c_r	c_{m}	c t	C ^L	M	fb	F'b	V	fv	F'v
D Only							_						0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.401	0.143	0.90	1.000	1.00	1.00	1.00	1.00	1.00	3.36	487.37	1215.00	0.76	21.83	153.00
+D+L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.361	0.128	1.00	1.000	1.00	1.00	1.00	1.00	1.00	3.36	487.37	1350.00	0.76	21.83	170.00
+D+S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.837	0.298	1.15	1.000	1.00	1.00	1.00	1.00	1.00	8.96	1,299.66	1552.50	2.03	58.20	195.50
+D+0.750L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.289	0.103	1.25	1.000	1.00	1.00	1.00	1.00	1.00	3.36	487.37	1687.50	0.76	21.83	212.50
+D+0.750L+0.750S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.706	0.251	1.15	1.000	1.00	1.00	1.00	1.00	1.00	7.56	1,096.59	1552.50	1.71	49.11	195.50
+1.140D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.257	0.091	1.60	1.000	1.00	1.00	1.00	1.00	1.00	3.83	555.61	2160.00	0.87	24.88	272.00
+1.105D+0.750L+0.7	750S				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.531	0.189	1.60	1.000	1.00	1.00	1.00	1.00	1.00	7.91	1,147.76	2160.00	1.79	51.40	272.00

Project Title: Engineer: Project ID: Project Descr:

Chases Corner - Lot 2 Mark Myers, P.E.

Wood Beam Project File: Chases Lot 2.ec6 LIC#: KW-06015659, Build:20.21.10.30 MYERS ENGINEERING (c) ENERCALC INC 1983-2021

DESCRIPTION: 4. Main Floor Cov'd Porch Beam

Maximum Forces & Stresses for Load Combinations

Waxiiiiuiii i Oi	CC3 CK C	いいてうろく	73 IUI 1	LUau	COIII	JIIIALI	UHŞ									
Load Combination	ľ	Max Stre	ess Ratio)S						Mon	Moment Values			Shear Values		
Segment Length	Span #	M		c_d	C _{F/V}	c_i	c_r	c_{m}	Ct CL	М	fb	F'b	V	fv	F'v	
+0.60D					1.000	1.00	1.00	1.00	1.00 1.00			0.00	0.00	0.00	0.00	
Length = 16.0 ft	1 .	0.135	0.048	1.60	1.000	1.00	1.00	1.00	1.00 1.00	2.02	292.42	2160.00	0.46	13.10	272.00	
+0.460D					1.000	1.00	1.00	1.00	1.00 1.00			0.00	0.00	0.00	0.00	
Length = 16.0 ft	1	0.104	0.037	1.60	1.000	1.00	1.00	1.00	1.00 1.00	1.55	224.19	2160.00	0.35	10.04	272.00	

S Only

Load Combination	Span	Max. "-" Defl Locat	ion in Span	Load Combination	Max. "+" Defi Loc	ation in Span
+D+S	1	0.6605	8.058	-	0.0000	0.000
Vertical Reactions			Suppo	rt notation : Far left is #1	Values in KIPS	
Load Combination		Support 1 S	Support 2			
Overall MAXimum		2.240	2.240			
Overall MINimum		1.400	1.400			
D Only		0.840	0.840			
+D+L		0.840	0.840			
+D+S		2.240	2.240			
+D+0.750L		0.840	0.840			
+D+0.750L+0.750S		1.890	1.890			
+0 60D		0.504	0.504			

1.400

1.400

Project Title: Engineer:

Chases Corner - Lot 2 Mark Myers, P.E.

Project ID: Project Descr:

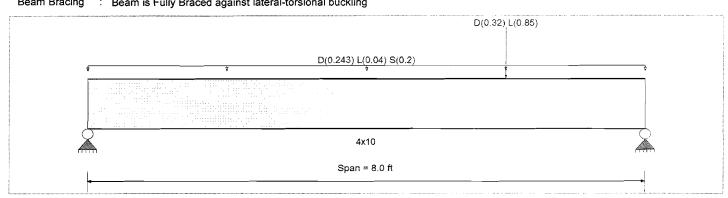
Project File: Chases Lot 2.ec6 **Wood Beam**

LIC#: KW-06015659, Build:20.21.10.30

MYERS ENGINEERING

(c) ENERCALC INC 1983-2021

DESCRIPTION: 5. Header at Great Rm Slider


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasticity			
Load Combination IBC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0ksi		
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0ksi		
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi				
Wood Grade : No.2	۴v	180.0 psi				
1100d Glado . 110.E	Ft	575.0 psi	Density	31.210 pcf		
Beam Bracing : Ream is Fully Braced against lateral-tors	sional buckling		-	·		

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.2430, L = 0.040, S = 0.20, Tributary Width = 1.0 ft

Point Load: D = 0.320, L = 0.850 k @ 6.0 ft

Design OK DESIGN SUMMARY Maximum Bending Stress Ratio Maximum Shear Stress Ratio 0.854: 1 = 0.468:1 Section used for this span Section used for this span 4x10 4x10 fv: Actual fb: Actual = 1.060.09 psi 96.79 psi Fv: Allowable Fb: Allowable 1,242.00 psi 207.00 psi +D+0.750L+0.750S +D+0.750L+0.750S Load Combination Load Combination Location of maximum on span 4.555ft Location of maximum on span 7.241 ft Span # where maximum occurs Span #1 Span #1 Span # where maximum occurs = = Maximum Deflection

Max Downward Transient Deflection 0.050 in Ratio = 1912 >= 360 Span: 1: S Only Max Upward Transient Deflection 0 in Ratio = 0 < 360

Max Downward Total Deflection 0.139 in Ratio = 689 >= 240 Span: 1: +D+0.750L+0.750S

Max Upward Total Deflection 0 in Ratio = 0 < 240 n/a

Maximum For Load Combination			ess Ratio		COIII	Jiiiati	UIIS				Mor	nent Value	5		hear Val	lues
Segment Length	Span #	M	V	C_d	$C_{F/V}$	Ci	c_r	c_{m}	C t	c _L -	М	fb	F'b	V	fv	F'v
D Only		_											0.00	0.00	0.00	0.00
Length = 8.0 ft	1	0.563	0.294	0.90	1.200	1.00	1.00	1.00	1.00	1.00	2.28	547.49	972.00	1.03	47.61	162.00
+D+L					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 8.0 ft	1	0.798	0.462	1.00	1.200	1.00	1.00	1.00	1.00	1.00	3.59	861.96	1080.00	1.79	83.15	180.00
+D+S					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 8.0 ft	1	0.749	0.375	1.15	1.200	1.00	1.00	1.00	1.00	1.00	3.87	930.74	1242.00	1.68	77.64	207.00
+D+0.750L					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 8.0 ft	1	0.578	0.330	1.25	1.200	1.00	1.00	1.00	1.00	1.00	3.25	780.53	1350.00	1.60	74.26	225.00
+D+0.750L+0.750S					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 8.0 ft	1	0.854	0.468	1.15	1.200	1.00	1.00	1.00	1.00	1.00	4.41	1,060.09	1242.00	2.09	96.79	207.00
+1.140D					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 8.0 ft	1	0.361	0.188	1.60	1.200	1.00	1.00	1.00	1.00	1.00	2.60	624.14	1728.00	1.17	54.27	288.00
+1.105D+0.750L+0.7	750S				1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project Title: Engineer: Project ID: Project Descr:

Wood Beam Project File: Chases Lot 2.ec6 (c) ENERCALC INC 1983-2021 LIC#: KW-06015659, Build:20.21.10.30 MYERS ENGINEERING

DESCRIPTION: 5. Header at Great Rm Slider

Maximum	Forces	& Stresses 1	for Load	Combinations
---------	--------	--------------	----------	--------------

Load Combination	1	Vlax Stre	ss Ratio	s							Mor	nent Values	3		Shear Values		
Segment Length	Span #	М	V	c_d	c_{FN}	Сі	c_r	c_{m}	c t	C ^L	М	fb	F'b		fv	F'v	
Length = 8.0 ft	1	0.647	0.353	1.60	1.200	1.00	1.00	1.00	1.00	1.00	4.65	1,117.42	1728.00	2.20	101.79	288.00	
+0.60D					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00	
Length = 8.0 ft	1	0.190	0.099	1.60	1.200	1.00	1.00	1.00	1.00	1.00	1.37	328.49	1728.00	0.62	28.56	288.00	
+0.460D					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00	
Length = 8.0 ft	1	0.146	0.076	1.60	1.200	1.00	1.00	1.00	1.00	1.00	1.05	251.84	1728.00	0.47	21.90	288.00	

Load Combination	Span	Max. "-" Defi Locat	ion in Span	Load Combination	Max. "+" Defi Loc	ation in Span
+D+0.750L+0.750S	1	0.1393	4.117		0.0000	0.000
Vertical Reactions			Suppo	ort notation : Far left is #1	Values in KIPS	
Load Combination		Support 1 S	Support 2			
Overall MAXimum		1.931	2.410			
Overall MINimum		0.800	0.800			
D Only		1.052	1.212			
+D+L		1.425	2.010			
+D+S		1.852	2.012			
+D+0.750L		1.331	1.810			
+D+0.750L+0.750S		1.931	2.410			
+0.60D		0.631	0.727			
L Only		0.373	0.798			
S Only		0.800	0.800			

Project Title: Engineer: Project ID:

Chases Corner - Lot 2 Mark Myers, P.E.

Project Descr:

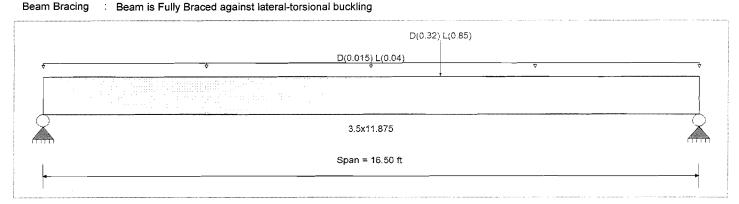
Project File: Chases Lot 2.ec6 **Wood Beam**

LIC#: KW-06015659, Build:20.21.10.30

MYERS ENGINEERING

(c) ENERCALC INC 1983-2021

DESCRIPTION: 6. Floor beam at shower


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb +	2325 psi	E : Modulus of Elas	ticity
Load Combination IBC 2018	Fb -	2325 psi	Ebend- xx	1550ksi
	Fc - Pri!	2050 psi	Eminbend - xx	787.815ksi
Wood Species : iLevel Truss Joist	Fc - Perp	800 psi		
Wood Grade : TimberStrand LSL 1.55E	Fv	310 psi		
Trood Grade . Timborotiand Ede 1.00E	Ft	1070 psi	Density	45.01 pcf

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.0150, L = 0.040, Tributary Width = 1.0 ft

Point Load: D = 0.320, L = 0.850 k @ 10.0 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.401: 1 3.5x11.875		hear Stress Ratio used for this span	=	0.129 : 1 3.5x11.875
fb: Actual	=	932.94 psi		fv: Actual	=	40.05 psi
Fb: Allowable	=	2,325.00psi		Fv: Aliowable	=	310.00 psi
Load Combination Location of maximum on span	=	+D+L 9.996ft		ombination n of maximum on span	=	+D+L 15.536 ft
Span # where maximum occurs	=	Span # 1		where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.260 in Ratio = 0 in Ratio = 0.358 in Ratio = 0 in Ratio =	760 >=480 0 <480 552 >=360 0 <360	Span: 1 : L Only n/a Span: 1 : +D+L n/a		

Maximum Fore	ces & S	Stress	es for	Load	Coml	oinati	ons									
Load Combination		Max Stre	ess Ratio	os	_						Mom	ent Value	s	S	hear Val	ues
Segment Length	Span #	M	V	c_d	$c_{F/V}$	Сį	c_r	c_{m}	c t	c _L -	M	fb	F'b	V	fv	F'v
D Only													0.00	0.00	0.00	0.00
Length = 16.50 ft	1	0.122	0.039	0.90	1.000	1.00	1.00	1.00	1.00	1.00	1.75	254.96	2092.50	0.30	10.94	279.00
+D+L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.50 ft	1	0.401	0.129	1.00	1.000	1.00	1.00	1.00	1.00	1.00	6.40	932.94	2325.00	1.11	40.05	310.00
+D+S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.50 ft	1	0.095	0.031	1.15	1.000	1.00	1.00	1.00	1.00	1.00	1.75	254.96	2673.75	0.30	10.94	356.50
+D+0.750L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.50 ft	1	0.263	0.085	1.25	1.000	1.00	1.00	1.00	1.00	1.00	5.23	763.45	2906.25	0.91	32.78	387.50
+D+0.750L+0.750S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.50 ft	1	0.286	0.092	1.15	1.000	1.00	1.00	1.00	1.00	1.00	5.23	763.45	2673.75	0.91	32.78	356.50
+1.140D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.50 ft	1	0.078	0.025	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.99	290.66	3720.00	0.35	12.48	496.00
+1.105D+0.750L+0.7	'50S				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project File: Chases Lot 2.ec6 **Wood Beam** LIC#: KW-06015659, Build:20.21.10.30 (c) ENERCALC INC 1983-2021 MYERS ENGINEERING

DESCRIPTION: 6. Floor beam at shower

Maximum Forces & Stresses for Load Combinations

Load Combination	ľ	Max Stre	ess Ratio	s				_			Mom	ent Value	3	5	Shear Values		
Segment Length	Span #	М	V	c_d	c_{FN}	Ci	c_r	c_{m}	c t	c _L _	M	fb	F'b		fv	F'v	
Length = 16.50 ft	1	0.212	0.068	1.60	1.000	1.00	1.00	1.00	1.00	1.00	5.42	790.22	3720.00	0.94	33.93	496.00	
+0.60D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00	
Length = 16.50 ft	1	0.041	0.013	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.05	152.98	3720.00	0.18	6.57	496.00	
+0.460D			,		1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00	
Length = 16.50 ft	1	0.032	0.010	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.80	117.28	3720.00	0.14	5.03	496.00	

Overa	l Ma	vimi	ım D	efle	ctions

Load Combination	Span	Max. "-" Defl Locat	ion in Span	Load Combination	Max. "+" Defl Loc	ation in Span
+D+L	1	0.3581	8.611	·	0.0000	0.000
Vertical Reactions			Suppo	ort notation : Far left is #1	Values in KIPS	
Load Combination		Support 1 S	upport 2		_	
Overall MAXimum	- 	0.915	1.163			
Overall MINimum		0.665	0.845			
D Only		0.250	0.318			
+D+L		0.915	1.163			
+D+S		0.250	0.318			
+D+0.750L		0.748	0.952			
+D+0.750L+0.750S		0.748	0.952			
+0.60D		0.150	0.191			
L Only S Only		0.665	0.845			

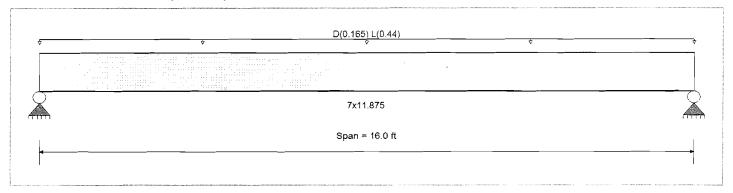
Project Title: Engineer: Project ID:

Chases Corner - Lot 2 Mark Myers, P.E.

Project Descr:

Project File: Chases Lot 2.ec6 **Wood Beam** (c) ENERCALC INC 1983-2021 LIC#: KW-06015659, Build:20.21.10.30 MYERS ENGINEERING

DESCRIPTION: 7. Flush beam over Great Rm


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	2900 psi	E : Modulus of Elasticity			
Load Combination IBC 2018	Fb -	2900 psi	Ebend- xx	2000 ksi		
	Fc - Pril	2900 psi	Eminbend - xx	1016.535 ksi		
Wood Species : iLevel Truss Joist	Fc - Perp	750 psi				
Wood Grade : Parallam PSL 2.0E	F۷	290 psi				
11000 01000 1 1 010000011 00 0100	Ft	2025 psi	Density	45.07 pcf		
Ream Bracing . Ream is Fully Braced against lateral tors	ional huckling		•	•		

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.1650, L = 0.440, Tributary Width = 1.0 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.487: 1 7x11.875		thear Stress Ratio used for this span	=	0.266 : 1 7x11.875
fb: Actual	=	1,412.12psi		fv: Actual	=	77.14 psi
Fb: Allowable	=	2,900.00 psi		Fv: Allowable	=	290.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	=	+D+L 8.000ft Span # 1	Ift Location of maximum on span			+D+L 15.066 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.334 in Ratio = 0 in Ratio = 0.459 in Ratio = 0 in Ratio =	574 >=480 0 <480 418 >=360 0 <360	Span: 1 : L Only n/a Span: 1 : +D+L n/a		to the second se

Load Combination		Max Stre	ess Ratio	os							Mor	nent Value	s	5	hear Val	ues
Segment Length	Span #	М		c_d	c_{FN}	Сį	c_r	c_{m}	С _t	C _L	M	fb	F'b	V	fv	F'ν
D Only													0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.148	0.081	0.90	1.000	1.00	1.00	1.00	1.00	1.00	5.28	385.12	2610.00	1.17	21.04	261.00
+D+L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.487	0.266	1.00	1.000	1.00	1.00	1.00	1.00	1.00	19.36	1,412.12	2900.00	4.27	77.14	290.00
+D+S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.115	0.063	1.15	1.000	1.00	1.00	1.00	1.00	1.00	5.28	385.12	3335.00	1.17	21.04	333.50
+D+0.750L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.319	0.174	1.25	1.000	1.00	1.00	1.00	1.00	1.00	15.84	1,155.37	3625.00	3.50	63.11	362.50
+D+0.750L+0.750S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.346	0.189	1.15	1.000	1.00	1.00	1.00	1.00	1.00	15.84	1,155.37	3335.00	3.50	63.11	333.50
+1.140D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.095	0.052	1.60	1.000	1.00	1.00	1.00	1.00	1.00	6.02	439.04	4640.00	1.33	23.98	464.00
+1.105D+0.750L+0.1	750S				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.258	0.141	1.60	1.000	1.00	1.00	1.00	1.00	1.00	16.39	1,195.81	4640.00	3.62	65.32	464.00

Project Title: Engineer: Chases Corner - Lot 2 Mark Myers, P.E.

Project ID: Project Descr:

Project File: Chases Lot 2 ec6 **Wood Beam** LIC#: KW-06015659, Build:20.21.10.30 MYERS ENGINEERING (c) ENERCALC INC 1983-2021 **DESCRIPTION:** 7. Flush beam over Great Rm **Maximum Forces & Stresses for Load Combinations** Max Stress Ratios Moment Values Shear Values Load Combination \mathtt{c}_{r} Cd CF/V C t C_{m} C_1 М fb F'b V Span # М fv F'v Segment Length +0.60D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.0 ft 0.050 0.027 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.17 231.07 4640.00 0.70 12.62 464.00 +0.460D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.0 ft 0.038 0.021 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.54 9.68 2.43 177.16 4640.00 464.00 **Overall Maximum Deflections** Load Combination Max. "-" Defl Location in Span Load Combination Max. "+" Defl Location in Span Span +D+L 8.058 0.4593 0.0000 0.000 Support notation: Far left is #1 Values in KIPS **Vertical Reactions** Load Combination Support 1 Support 2 Overall MAXimum 4.840 4.840 Overall MINimum 3.520 3.520 1.320 D Only 1.320 +D+L 4.840 4.840 +D+S 1.320 1.320 +D+0.750L 3.960 3.960 +D+0.750L+0.750S 3.960 3.960 +0.60D 0.792 0.792 L Only 3.520 3.520 S Only

Project Title: Engineer: Chases Corner - Lot 2 Mark Myers, P.E.

Project ID: Project Descr:

 Wood Beam
 Project File: Chases Lot 2.ec6

 LIC#: KW-06015659, Build: 20.21.10.30
 MYERS ENGINEERING
 (c) ENERCALC INC 1983-2021

DESCRIPTION: 8. Dropped beam over Great Rm/Dining Rm

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb +	2400 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb -	1850 psi	Ebend-xx	1800 ksi
	Fc - Pril	1650 psi	Eminbend - xx	950 ksi
Wood Species : DF/DF	Fc - Perp	650 psi	Ebend- yy	1600 ksi
Wood Grade : 24F-V4	Fv	265 psi	Eminbend - yy	850ksi
VVOOd Grade : 241-V4	Ft	1100 psi	Density	31.21 pcf
Beam Bracing : Beam is Fully Braced against lateral-	torsional buckling		•	•

D(0.165) L(0.44)

5.125x13.5

Span = 16.0 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.1650, L = 0.440, Tributary Width = 1.0 ft

DESIGN SUMMARY					Ä	Design OK
Maximum Bending Stress Ratio	=	0.622 1	Maximum S	hear Stress Ratio	=	0.341 : 1
Section used for this span		5.125x13.5	Section	used for this span		5.125x13.5
fb: Actual	=	1,492.37 psi		fv: Actual	=	90.38 psi
Fb: Allowable	=	2,400.00psi		Fv: Allowable	=	265.00 psi
Load Combination		+D+L	Load C	ombination		+D+L
Location of maximum on span	=	8.000ft	Locatio	n of maximum on span	=	14.891 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection						
Max Downward Transient Deflect	ion	0.345 in Ratio ≃	556>=480	Span: 1 : L Only		
Max Upward Transient Deflection	1	0 in Ratio =	0 <480	n/a		
Max Downward Total Deflection		0.474 in Ratio =	404 >= 360	Span: 1 : +D+L		
Max Upward Total Deflection		0 in Ratio =	0 < 360	n/a		

Maximum Forces & Stresses for Load Combinations Max Stress Ratios Moment Values Shear Values Load Combination Span # М C_d CF/V Сi C_r C_m C_t M fb F'b ٧ fv F'ν Segment Length D Only 0.00 0.00 0.00 0.00 0.90 1.000 0.188 0.103 1.00 1.00 1.00 1.00 1.00 5.28 407.01 2160.00 Length = 16.0 ft1.14 24.65 238.50 +D+L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.0 ft 0.622 0.341 1.00 1.000 1.00 1.00 1.00 1.00 1.00 1,492.37 2400.00 4.17 90.38 265.00 19.36 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.0 ft 0.147 0.081 1.15 1.000 1.00 1.00 1.00 1.00 1.00 5.28 407.01 2760.00 24.65 304.75 1.14 1.000 1.00 1.00 1.00 1.00 1.00 +D+0.750L 0.00 0.00 0.00 0.00 Length = 16.0 ft 0.407 0.223 1.25 1.000 1.00 1.00 1.00 1.00 1.00 1 15.84 1.221.03 3000.00 3.41 73.95 331.25 +D+0.750L+0.750S 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.0 ft 0.442 0.243 1.00 1.15 1.000 1.00 1.00 1.00 1.00 1 15.84 1,221.03 2760.00 3.41 73.95 304.75 +1.140D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.0 ft 0.121 0.066 1.60 1.000 1.00 1.00 1.00 1.00 1.00 6.02 463.99 3840.00 1.30 28.10 424.00 1.00 1.00 1.00 1.00 +1.105D+0.750L+0.750S 1.000 1.00 0.00 0.00 0.00 0.00 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.53 Length = 16.0 ft 0.329 0.181 16.39 1,263.77 3840.00 76.54 424.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project Title: Engineer: Project ID: Project Descr:

Wood Beam		Project File: Chases Lot 2.ec6
LIC# : KW-06015659, Build:20.21.10.30	MYERS ENGINEERING	(c) ENERCALC INC 1983-2021
DESCRIPTION: 8. Dropped beam over	er Great Rm/Dining Rm	

Load Combination		Max Stre	ess Rati								Mom	ent Value	5	S	shear Val	ues
Segment Length	Span #	M	V	c_d	$c_{F/V}$	c_i	Cr	c_{m}	C t	c _L -	M	fb	F'b	V	fv	F'v
+0.60D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.064	0.035	1.60	1.000	1.00	1.00	1.00	1.00	1.00	3.17	244.21	3840.00	0.68	14.79	424.00
+0.460D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.0 ft	1	0.049	0.027	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.43	187.22	3840.00	0.52	11.34	424.00
Overall Maximur	n Defle	ections	\$													
Load Combination		S	pan	Max. "-	"Defl L	ocation	in Sp	an	Load C	ombin	ation		Max. "+'	Defl Lo	cation in	Span
+D+L			1		.4744		8.058						0.	0000	0.	000
Vertical Reaction	าร						Su	pport r	otation	: Far l	eft is #1		Values in	KIPS		
Load Combination					Suppor	t 1 Su	port 2									
Overall MAXimum					4.8	340	4.840									
Overall MINimum					3.5	520	3.520									
D Only					1.3	320	1.320									
+D+L					4.8	340	4.840									
+D+S					1.3	320	1.320									
+D+0.750L					3.9	960	3.960									
+D+0.750L+0.7508	3				3.9	960	3.960									
+0.60D					0.7	792	0.792									
L Only					3.5	20	3.520									
S Only																

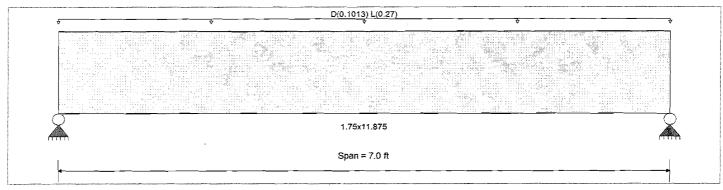
Chases Corner - Lot 2 Mark Myers, P.E.

Project II Project E

 Wood Beam
 Project File: Chases Lot 2.ec6

 LiC#: KW-06015659, Build:20.21.10.30
 MYERS ENGINEERING
 (c) ENERCALC INC 1983-2021

DESCRIPTION: 9. Rim Beam at Stair


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method :	Allowable Stress Design	Fb+	2325 psi	E : Modulus of Elas	ticity
Load Combination		Fb -	2325 psi	Ebend- xx	1550 ksi
		Fc - Prll	2050 psi	Eminbend - xx	787.815 ksi
Wood Species Wood Grade	: iLevel Truss Joist : TimberStrand LSL 1.55E	Fc - Perp Fv	800 psi 310 psi		
Wood Grade	. Timbolotrand Ede 1.30E	Ft	1070 psi	Density	45.01 pcf
Beam Bracing	Beam is Fully Braced against lateral-torsic	onal buckling		•	·

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.1013, L = 0.270, Tributary Width = 1.0 ft

DESIGN SUMMARY					ă.	Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.285 1 1.75x11.875		hear Stress Ratio used for this span	=	0.219 : 1 1.75x11.875
fb: Actual	=	663.53psi		fv: Actual	=	67.78 psi
Fb: Allowable	=	2,325.00psi		Fv: Allowable	=	310.00 psi
Load Combination		+D+L	Load C	ombination		+D+L
Location of maximum on span	=	3.500ft	Locatio	n of maximum on span	=	6.029 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflect	ion	0.039 in Ratio =	2167>=480	Span: 1 : L Only		
Max Upward Transient Deflection		0.039 in Ratio =	0 < 480	n/a		
Max Downward Total Deflection		0.053 in Ratio =	1575>=360	Span: 1 : +D+L		
Max Upward Total Deflection		0 in Ratio =	0 < 360	n/a		

Maximum For Load Combination			ess Ratio								Mom	ent Value	s		hear Val	ues
Segment Length	Span #	M		c_d	C _{F/V}	Сį	c_{r}	c_{m}	С _t	c ^r _	М	fb	F'b		fv	F'v
D Only													0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.087	0.066	0.90	1.000	1.00	1.00	1.00	1.00	1.00	0.62	181.03	2092.50	0.26	18.49-	279.00
+D+L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.285	0.219	1.00	1.000	1.00	1.00	1.00	1.00	1.00	2.27	663.53	2325.00	0.94	67.78	310.00
+D+S	•				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.068	0.052	1.15	1.000	1.00	1.00	1.00	1.00	1.00	0.62	181.03	2673.75	0.26	18.49	356.50
+D+0.750L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.187	0.143	1.25	1.000	1.00	1.00	1.00	1.00	1.00	1.86	542.90	2906.25	0.77	55.46	387.50
+D+0.750L+0.750S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length ≈ 7.0 ft	1	0.203	0.156	1.15	1.000	1.00	1.00	1.00	1.00	1.00	1.86	542.90	2673.75	0.77	55.46	356.50
+1.140D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.055	0.043	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.71	206.37	3720.00	0.29	21.08	496.00
+1.105D+0.750L+0.7	750S				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.151	0.116	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.93	561.91	3720.00	0.80	57.40	496.00

Chases Corner - Lot 2 Mark Myers, P.E.

Wood Beam		Project File: Chases Lot 2.ec6
LIC#: KW-06015659, Build:20.21.10.30	MYERS ENGINEERING	(c) ENERCALC INC 1983-2021

DESCRIPTION: 9. Rim Beam at Stair

Maximum	Forces	&	Stresses	for	Load	Combinations

Load Combination		Max Stre	ss Ratio	os							Mom	ent Values	s	S	hear Val	ues
Segment Length	Span #	М	V	c_d	c_{FN}	c_i	c_{r}	c_{m}	C t	c _L _	M	fb	F'b		fv	F'v
+0.60D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.029	0.022	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.37	108.62	3720.00	0.15	11.10	496.00
+0.460D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.022	0.017	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.29	83.27	3720.00	0.12	8.51	496.00

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defi Loca	ation in Span	Load Combination	Max. "+" Defl Locati	on in Span
+D+L	1	0.0533	3.526		0.0000	0.000
			C	t materian . Can last in 444	V-1 - 1-1000	

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1 S	upport 2	
Overall MAXimum	1.300	1.300	
Overall MINimum	0.945	0.945	
D Only	0.355	0.355	
+D+L	1.300	1.300	
+D+S	0.355	0.355	
+D+0.750L	1.063	1.063	
+D+0.750L+0.750S	1.063	1.063	
+0.60D	0.213	0.213	
L Only	0.945	0.945	
S Only			

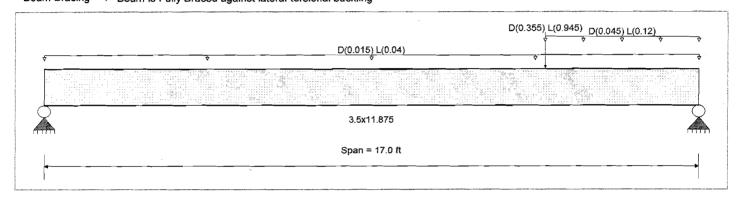
Project Title: Engineer:

Chases Corner - Lot 2 Mark Myers, P.E.

Project ID: Project Descr:

Project File: Chases Lot 2.ec6 **Wood Beam** (c) ENERCALC INC 1983-2021 LIC#: KW-06015659, Build:20.21.10.30 MYERS ENGINEERING

DESCRIPTION: 10. Rim Beam at Stair supporting Bm 9


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	2,325.0 psi	E : Modulus of Elas	ticity
Load Combination : IBC 2018	Fb -	2,325.0 psi	Ebend- xx	1,550.0ksi
	Fc - Prll	2,050.0 psi	Eminbend - xx	787.82 ksi
Wood Species : iLevel Truss Joist	Fc - Perp	800.0 psi		
Wood Grade : TimberStrand LSL 1.55E	Fv	310.0 psi		
Trood Orado . Tamboroudilo Ede 1.30E	Ft	1,070.0 psi	Density	45.010 pcf
Ream Bracing : Ream is Fully Braced against lateral-torsional	huckling		-	·

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.0150, L = 0.040, Tributary Width = 1.0 ft

Point Load: D = 0.3550, L = 0.9450 k @ 13.0 ft

Uniform Load: D = 0.0450, L = 0.120 k/ft, Extent = 13.0 -->> 17.0 ft, Tributary Width = 1.0 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.402 1 3.5x11.875		hear Stress Ratio used for this span	=	0.214:1 3.5x11.875
fb: Actual	=	935.30psi		fv: Actual	=	66.38 psi
Fb: Allowable	=	2,325.00psi		Fv: Allowable	=	310.00 psi
Load Combination		+D+L	Load C	ombination		+D+L
Location of maximum on span	=	12.967ft	Locatio	n of maximum on span	=	16.069 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs		=	Span # 1
Maximum Deflection Max Downward Transient Deflect	ion	0.285 in Ratio =	714 >=480	Span: 1 : L Only		
Max Upward Transient Deflection		0.200 in Ratio =	0 < 480	n/a		
Max Downward Total Deflection Max Upward Total Deflection	-	0.392 in Ratio = 0 in Ratio =	519>=360 0<360	Span: 1 : +D+L n/a		

Maximum For	ces & S	Stress	es for	Load	Comi	oinati	ons									
Load Combination		Max Stre	ess Ratio	วร							Mom	ent Value	s		hear Val	ues
Segment Length	Span #	M	\overline{v}	c_d	C _{F/V}	Сį	c_r	Cm	c t	C _L	M	fb	F'b	V	fv	F'v
D Only													0.00	0.00	0.00	0.00
Length = 17.0 ft	1	0.122	0.065	0.90	1.000	1.00	1.00	1.00	1.00	1.00	1.75	255.28	2092.50	0.50	18.12	279.00
+D+L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 17.0 ft	1	0.402	0.214	1.00	1.000	1.00	1.00	1.00	1.00	1.00	6.41	935.30	2325.00	1.84	66.38	310.00
+D+S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length ≈ 17.0 ft	1	0.095	0.051	1.15	1.000	1.00	1.00	1.00	1.00	1.00	1.75	255.28	2673.75	0.50	18.12	356.50
+D+0.750L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 17.0 ft	1	0.263	0.140	1.25	1.000	1.00	1.00	1.00	1.00	1.00	5.25	765.29	2906.25	1.50	54.31	387.50
+D+0.750L+0.750S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 17.0 ft	1	0.286	0.152	1.15	1.000	1.00	1.00	1.00	1.00	1.00	5.25	765.29	2673.75	1.50	54.31	356.50
+1.140D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 17.0 ft	1	0.078	0.042	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.99	291.02	3720.00	0.57	20.65	496.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project Title: Engineer: Project ID: Project Descr:

Project File: Chases Lot 2.ec6 **Wood Beam** (c) ENERCALC INC 1983-2021 LIC#: KW-06015659, Build:20.21.10.30 MYERS ENGINEERING

DESCRIPTION	: 10. F	Rim Be	am at	Stair s	suppo	orting E	3m 9									
Maximum For	ces & S	Stresse	es for	Load	Com	binati	ons									•
Load Combination		Max Stre	ss Rati	0s							Mom	ent Value	s		Shear Val	ues
Segment Length	Span #	М	V	c_d	C _{F/V}	c_i	cr	cw	c t	C _L	М	fb	F'b		fv	F'v
+1.105D+0.750L+0.7	750S				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 17.0 ft	1	0.213	0.113	1.60	1.000	1.00	1.00	1.00	1.00	1.00	5.43	792.10	3720.00	1.56	56.21	496.00
+0.60D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 17.0 ft	1	0.041	0.022	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.05	153.17	3720.00	0.30	10.87	496.00
+0.460D					1.000	1.00	1.00	1.00	1.00	1.00	,		0.00	0.00	0.00	0.00
Length = 17.0 ft	1	0.032	0.017	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.80	117.43	3720.00	0.23	8.33	496.00
Overall Maximus	m Defle	ections	;												_	
Load Combination		S	pan	Max. "-	" Defl	Location	ı in Sp	an	Load C	ombin	ation		Max. "+	"Defi Lo	cation in	Span
+D+L			1	0	.3925		9.245	·					0	.0000	0.	000
Vertical Reactio	ns						Su	pport n	otation	: Far	left is #1		Values ir	KIPS		
Load Combination					Suppo	rt 1 Su	port 2									
Overall MAXimum					0.	851	2.044									
Overall MINimum					0.	619	1.486									
D Only					0.	232	0.558									
+D+L					0.	851	2.044									
+D+S					0.	232	0.558									
+D+0.750L					0.	696	1.672									
+D+0.750L+0.750	S				0.	696	1.672									
+0.60D					0.	139	0.335									
L Only					0.	619	1.486									
S Only																

Project Title: Engineer: Project ID:

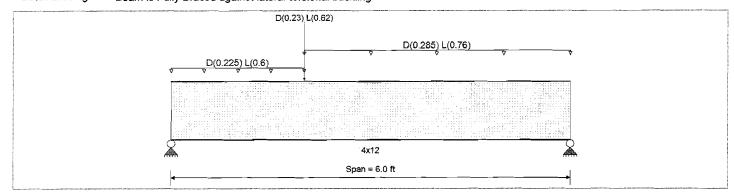
Chases Corner - Lot 2 Mark Myers, P.E.

Project ID: Project Descr:

 Wood Beam
 Project File: Chases: Lot 2.ec6

 Lic#: KW-06015659, Build:20.21.10.30
 MYERS ENGINEERING
 (c) ENERCALC INC 1983-2021

DESCRIPTION: 11. Header at Pantry


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	Fb+	900.0 psi	E: Modulus of Elas	ticity
Load Combination : IBC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0 ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv	180.0 psi		
11000 01000 . 110.2	Ft	575.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional b	ucklina		•	

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1

Uniform Load : D = 0.2250, L = 0.60 k/ft, Extent = 0.0 -->> 2.0 ft, Tributary Width = 1.0 ft Uniform Load : D = 0.2850, L = 0.760 k/ft, Extent = 2.0 -->> 6.0 ft, Tributary Width = 1.0 ft

Point Load : D = 0.230, L = 0.620 k @ 2.0 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.879 1 4x12		hear Stress Ratio used for this span	=	0.545:1 4x12
fb: Actual	=	870.17psi		fv: Actual	=	98.14 psi
Fb: Allowable	=	990.00psi		Fv: Allowable	=	180.00 psi
Load Combination		+D+L	Load C	ombination		+D+L
Location of maximum on span	=	2.803ft	Locatio	n of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflecti Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.038 in Ratio = 0 in Ratio = 0.052 in Ratio = 0 in Ratio =	1893 >=480 0 <480 1377 >=360 0 <360	Span: 1 : L Only n/a Span: 1 : +D+L n/a		

Maximum For	ces & S	Stresse	es for	Load	Comb	oinati	ons									
Load Combination		Max Stre	ess Ratio)s							Mom	ent Value	s	5	Shear Val	ues
Segment Length	Span #	М	V	C^{d}	c_{FN}	Сį	c_r	c_m	Сt	C ^L	M	fb	F'b	V	fv	F'v
D Only													0.00	0.00	0.00	0.00
Length ≈ 6.0 ft	1	0.266	0.165	0.90	1.100	1.00	1.00	1.00	1.00	1.00	1.46	237.00	891.00	0.70	26.72	162.00
+D+L					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.879	0.545	1.00	1.100	1.00	1.00	1.00	1.00	1.00	5.35	870.17	990.00	2.58	98.14	180.00
+D+S					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.208	0.129	1.15	1.100	1.00	1.00	1.00	1.00	1.00	1.46	237.00	1138.50	0.70	26.72	207.00
+D+0.750L					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.575	0.357	1.25	1.100	1.00	1.00	1.00	1.00	1.00	4.38	711.88	1237.50	2.11	80.29	225.00
+D+0.750L+0.750S					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.625	0.388	1.15	1.100	1.00	1.00	1.00	1.00	1.00	4.38	711.88	1138.50	2.11	80.29	207.00
+1.140D					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project Title: Engineer: Project ID: Project Descr:

Project File: Chases Lot 2.ec6 **Wood Beam** LIC#: KW-06015659, Build:20.21.10.30 MYERS ENGINEERING (c) ENERCALC INC 1983-2021

DESCRIPTION: 11. Header at Pantry

Maximum Force	s & Stresses for Load	Combinations
	May Chrone Detico	

Load Combination		Max Stress Ratios									Mom		Shear Values			
Segment Length	Span #	M		c_d	CF/V	Сį	c_r	c_{m}	C _t C	շլ _	M	fb	F'b	V	fv	F'v
Length = 6.0 ft	1	0.171	0.106	1.60	1.100	1.00	1.00	1.00	1.00	1.00	1.66	270.19	1584.00	0.80	30.46	288.00
+1.105D+0.750L+0.	750S				1.100	1.00	1.00	1.00	1.00	1.00			0.00	0,00	0.00	0.00
Length $= 6.0 \text{ ft}$. 1	0.465	0.289	1.60	1,100	1.00	1.00	1.00	1.00	1.00	4.53	736.77	1584.00	2.18	83.09	288.00
+0.60D					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.090	0.056	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.87	142.20	1584.00	0.42	16.03	288.00
+0.460D					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 6.0 ft	1	0.069	0.043	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.67	109.02	1584.00	0.32	12.29	288.00

Overall Maximum Deflections

S Only

Overali Maximum Dene	ecuons					
Load Combination	Span	Max. "-" Defl Locat	ion in Span	Load Combination	Max. "+" Defl Loc	ation in Span
+D+L	1	0.0523	2.978		0.0000	0.000
Vertical Reactions			Suppo	rt notation : Far left is #1	Values in KIPS	
Load Combination		Support 1 S	Support 2			
Overall MAXimum		3.335	3.345			
Overall MINimum		2.427	2.433			
D Only		0.908	0.912			
+D+L		3.335	3.345			
+D+S		0.908	0.912			
+D+0.750L		2.728	2.737			
+D+0.750L+0.750S		2.728	2.737			
+0.60D		0.545	0.547			
L Only		2.427	2.433			

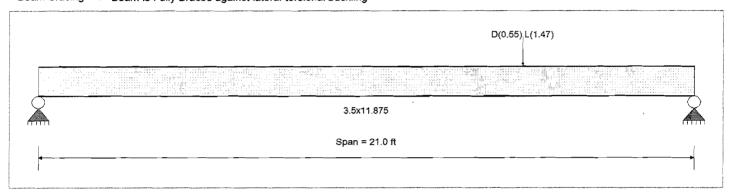
Project Title: Engineer: Project ID:

Chases Corner - Lot 2 Mark Myers, P.E.

Project Descr:

Project File: Chases Lot 2.ec6 **Wood Beam** (c) ENERCALC INC 1983-2021 LIC#: KW-06015659, Build:20.21.10.30 MYERS ENGINEERING

DESCRIPTION: 12. Beam at side by side showers


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	Fb +	2,325.0 psi	E : Modulus of Elas	ticity
Load Combination : IBC 2018	Fb -	2,325.0 psi	Ebend- xx	1,550.0ksi
	Fc - Pril	2,050.0 psi	Eminbend - xx	787.82 ksi
Wood Species : iLevel Truss Joist	Fc - Perp	800.0 psi		
Wood Grade : TimberStrand LSL 1.55E	Fv	310.0 psi		
Tribologiana Edit 1.002	Ft	1,070.0 psi	Density	45.010 pcf
Beam Bracing : Beam is Fully Braced against lateral-tors	ional buckling		•	

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Point Load: D = 0.550, L = 1.470 k @ 15.50 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.514: 1 3.5x11.875		hear Stress Ratio used for this span	=	0.174 : 1 3.5x11.875
fb: Actual	=	1,194.85 psi		fv: Actual	=	53.81 psi
Fb: Allowable	=	2,325.00 psi		Fv: Allowable	=	310.00 psi
Load Combination		+D+L	Load C	ombination		+D+L
Location of maximum on span =		15.482ft	Locatio	n of maximum on span	=	15.558 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection						
Max Downward Transient Deflect	ion	0.472 in Ratio =	534 >=480	Span: 1 : L Only		
Max Upward Transient Deflection	ı	0 in Ratio =	0 < 480	n/a		
Max Downward Total Deflection		0.648 in Ratio =	388 >=360	Span: 1 : +D+L		
Max Upward Total Deflection		0 in Ratio =	0 < 360	n/a		

Maximum Forces & Stresses for Load Combinations Moment Values Shear Values Load Combination Max Stress Ratios C^d C_{FN} c_{m} C_t Span # М C_i C_r C_1 М fb F'b Segment Length fv D Only 0.00 0.00 0.00 0.00 0.90 1.000 Length = 21.0 ft0.155 0.053 1.00 1.00 1.00 1.00 1.00 2.23 325.33 2092.50 0.41 14.65 279.00 +D+I 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.514 0.174 1.00 1.000 1.00 1.00 1.00 1.00 1.00 Length = 21.0 ft 8.19 1,194.85 2325.00 1.49 53.81 310.00 1.00 1.00 1.00 +D+S 1.000 1.00 1.00 0.00 0.00 0.00 0.00 Length = 21.0 ft 0.122 0.041 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.23 325.33 2673.75 356.50 0.41 14.65 +D+0.750L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 21.0 ft 0.336 0.114 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.70 977.47 2906.25 1.22 44.02 387.50 +D+0.750L+0.750S 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 21.0 ft 1 0.366 0.123 1.15 1.000 1.00 1.00 1.00 1.00 1.00 6.70 977.47 2673.75 1.22 44.02 356.50 +1.140D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 21.0 ft 0.100 0.034 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.54 370.88 3720.00 0.46 16.70 496.00 +1.105D+0.750L+0.750S 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.272 0.092 1.60 1.000 Length = 21.0 ft 1.00 1.00 1.00 1.00 1.00 1,011.63 3720.00 1.26 45.56 6.93 496.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project Title: Engineer: Project ID: Project Descr:

Project File: Chases Lot 2.ec6 **Wood Beam** LIC#: KW-06015659, Build:20.21.10.30 MYERS ENGINEERING (c) ENERCALC INC 1983-2021

DESCRIPTION: 12. Beam at side by side showers

waximum ror	ces a s	tresse	es for	Loau	Comi	ınatı	ons									
Load Combination	S			-				Moment Values			Shear Values					
Segment Length	Span #	М	V	Cd	CF/V	Сį	C _r	Cm	c t	CL _	М	fb	F'b	V	fv	F'v
+0.60D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 21.0 ft	1	0.052	0.018	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.34	195.20	3720.00	0.24	8.79	496.00
+0.460D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 21.0 ft	1	0.040	0.014	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.03	149.65	3720.00	0.19	6.74	496.00

+0.60D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 21.0 ft	1	0.052	0.018	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.34	195.20	3720.00	0.24	8.79	496.00
+0.460D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 21.0 ft	1	0.040	0.014	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.03	149.65	3720.00	0.19	6.74	496.00
Overall Maximum	Def	lections	\$													
Load Combination		S	pan	Max. "	" Defl	Locatio	n in Spa	an	Load C	ombin	ation		Max. "-	"Defl Loc	cation in	Span
+D+L	_		1		0.6481		11.726		-					0.000	0.	000
Vertical Reaction	s						Su	pport i	notation	: Far I	left is #1		Values i	n KIPS		
Load Combination					Suppo	rt 1 Su	pport 2									_
Overall MAXimum					0.	529	1.491									
Overall MINimum					0.3	385	1.085									
D Only					0.	144	0.406									
+D+L					0.	529	1.491									
+D+S					0.	144	0.406									
+D+0.750L					0.4	433	1.220									
+D+0.750L+0.750S					0.4	433	1.220									
+0.60D					0.0	086	0.244									
L Only					0.3	385	1.085									
S Only																

Project Title: Engineer: Chases Corner - Lot 2 Mark Myers, P.E.

Project ID: Project Descr:

 Wood Beam
 Project File: Chases Lot 2.ec6

 LIC#: KW-06015659, Build:20.22.4.26
 MYERS ENGINEERING
 (c) ENERCALC INC 1983-2022

DESCRIPTION: 13. Beam over Garage at Grid D

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method :	Allowable Stress Design	Fb +	2,400.0 psi	E : Modulus of Elas	ticity
Load Combination	IBC 2018	Fb -	1,850.0 psi	Ebend- xx	1,800.0ksi
		Fc - Prll	1,650.0 psi	Eminbend - xx	950.0ksi
Wood Species :	DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0ksi
Wood Grade :	24F-V4	Fv	265.0 psi	Eminbend - yy	850.0ksi
Wood Orauc .	241 - 44	Ft	1,100.0 psi	Density	31.210pcf
Beam Bracing :	Beam is Fully Braced against lateral-torsional bucklin	g		·	•

5.5x15

Span = 21.0 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Uniform Load: D = 0.2130, L = 0.040, S = 0.150, Tributary Width = 1.0 ft

DESIGN SUMMARY						Design UK
Maximum Bending Stress Ratio Section used for this span	=	0.434: 1 5.5x15		hear Stress Ratio used for this span	=	0.201 : 1 5.5x15
fb: Actual	=	1,164.24psi		fv: Actual	=	61.21 psi
Fb: Allowable	=	2,680.10psi		Fv: Allowable	=	304.75 psi
Load Combination		+D+S	Load C	ombination		+D+S
Location of maximum on span	=	10.500ft	Locatio	n of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection						
Max Downward Transient Deflect	ion	0.237 in Ratio =	1062 >= 480	Span: 1 : S Only		
Max Upward Transient Deflection		0 in Ratio =	0 <480	n/a		
Max Downward Total Deflection		0.574 in Ratio =	439 >= 360	Span: 1:+D+S		
Max Upward Total Deflection		0 in Ratio =	0 < 360	n/a		

Maximum Forces & Stresses for Load Combinations Max Stress Ratios Moment Values Shear Values Load Combination c_r C_{i} \mathtt{C}_{m} c_t M Cq CF/V c_I F'b Segment Length Span # М fb ٧ fv F'v D Only 0.00 0.00 0.00 0.00 0.90 0.971 1.00 Length = 21.0 ft 1 0.326 0.151 1.00 1.00 1.00 1.00 11.74 683.15 2097.47 1.98 35.91 238,50 +D+L 0.971 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 21.0 ft 0.348 0.161 1.00 0.971 1.00 1.00 1.00 1.00 1.00 13.95 811.44 2330.52 2.35 42.66 265.00 1.00 +D+S0.971 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.434 0.201 1.15 0.971 1.00 1.00 1.00 1.00 1.00 Length = 21.0 ft1 1,164.24 2680.10 20.01 3.37 61.21 304.75 +D+0.750L 0.971 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 21.0 ft0.268 0.124 1.25 0.971 1.00 1.00 1.00 1.00 1.00 13.40 779.37 2913.15 2.25 40.97 331.25 +D+0.750L+0.750S 0.971 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 21.0 ft 0.425 0.197 1.15 0.971 1.00 1.00 1.00 1.00 1.00 19.60 1,140.19 2680.10 3.30 59.94 304.75 +1.140D 0.971 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.209 0.097 1.60 0.971 1.00 1.00 Length = 21.0 ft 1.00 1.00 1.00 13.39 778.79 3728.84 2.25 40.94 424.00 +1.105D+0.750L+0.750S 0.971 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project Title: Engineer: Project ID: Project Descr:

Wood Beam

Project File: Chases Lot 2.ec6

MYERS ENGINEERING

DESCRIPTION: 13. Beam over Garage at Grid D

(c) ENERCALC INC 1983-2	2022
(0) =: (=: (0) (=0 110 1000 1	

Maximum Fo	rces &	Stresses	tor	Load	Combination	S
Load Combination		Max Stress	Rati	os		

Load Combination		Max Stre	ess Ratio	os							Mor	nent Value	s		Shear Val	ues
Segment Length	Span #	M	v	c_d	$C_{F\!/\!V}$	C _i	c_r	c_{m}	C t	C _L	M	fb	F'b		fv	F'v
Length = 21.0 ft	1	0.325	0.150	1.60	0.971	1.00	1.00	1.00	1.00	1.00	20.83	1,211.92	3728.84	3.50	63.71	424.00
+0.60D					0.971	1.00	1.00	1.00	1.00	1.00		•	0.00	0.00	0.00	0.00
Length = 21.0 ft	1	0.110	0.051	1.60	0.971	1.00	1.00	1.00	1.00	1.00	7.04	409.89	3728.84	1.19	21.55	424.00
+0.460D					0.971	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 21.0 ft	1	0.084	0.039	1.60	0.971	1.00	1.00	1.00	1.00	1.00	5.40	314.25	3728.84	0.91	16.52	424.00
Length = 21.0 ft	1	0.084	0.039	1.60	0.971	1.00	1.00	1.00	1.00	1.00	5.40	314.25	3728.84	0.91	16.52	424.00

Overall Maximum Deflections

LIC#: KW-06015659, Build:20.22.4.26

Load Combination	Span	Max. "-" Defi Locat	tion in Span	Load Combination	Max. "+" Def	Location in Span
+D+\$	1	0.5738	10.577		0.0000	0.000

Vertical Reactions		Support notation : Far left is #1	Values in KIPS	
Load Combination	Support 1 S	Support 2		
Overall MAXimum	3.812	3.812		
Overall MINimum	1.575	1.575		
D Only	2.237	2.237		
+D+L	2.657	2.657		
+D+S	3.812	3.812		
+D+0.750L	2.552	2.552		
+D+0.750L+0.750S	3.733	3.733		
+0.60D	1.342	1.342		
L Only	0.420	0.420		
S Only	1.575	1.575		

Project Title: Engineer: Project ID:

Chases Corner - Lot 2 Mark Myers, P.E.

Project Descr:

Project File: Chases Lot 2.ec6 **Wood Beam** (c) ENERCALC INC 1983-2022 LIC#: KW-06015659, Build:20.22.4.26 MYERS ENGINEERING

DESCRIPTION: 14. Garage Door Header REV

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb +	875 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb -	875 ps i	Ebend- xx	1300 ksi
	Fc - Prli	600 psi	Eminbend - xx	470ksi
Wood Species : Douglas Fir-Larch	Fc - Perp	625 psi		
Wood Grade : No.2	Fv	170 psi		
77000 Clade . 170.2	Ft	425 psi	Density	31.21 pcf
Ream Bracing : Ream is Fully Braced against lateral-torsic	onal buckling		•	-

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Uniform Load: D = 0.0750, S = 0.1250, Tributary Width = 1.0 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio	=	0.649 1	Maximum S	hear Stress Ratio	=	0.174 : 1
Section used for this span		6x12	Section	used for this span		6x12
fb: Actual	=	653.46 psi		fv: Actual	=	34.04 psi
Fb: Allowable	=	1,006.25 psi		Fv: Allowable	=	195.50 psi
Load Combination		+D+S	Load C	ombination		+D+S
Location of maximum on span	=	8.125ft	Locatio	n of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection						
Max Downward Transient Deflect	ion	0.218 in Ratio =	895>=480	Span: 1 : S Only		
Max Upward Transient Deflection	1	0 in Ratio =	0 <480	n/a		
Max Downward Total Deflection		0.348 in Ratio =	559>=360	Span: 1 : +D+S		
Max Upward Total Deflection		0 in Ratio =	0 < 360	n/a		

Load Combination	N	Max Stress Ratios							_		Mom	ent Value	5	3	hear Val	ues
Segment Length	Span #	M	V	C^{d}	c_{FN}	c_i	c_r	c_{m}	C t	C ^L _	M	fb	F'b	V	fv	F'v
D Only		_											0.00	0.00	0.00	0.00
Length = 16.250 ft	1	0.311	0.083	0.90	1.000	1.00	1.00	1.00	1.00	1.00	2.48	245.05	787.50	0.54	12.76	153.00
+D+L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.250 ft	1	0.280	0.075	1.00	1.000	1.00	1.00	1.00	1.00	1.00	2.48	245.05	875.00	0.54	12.76	170.00
+D+S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.250 ft	1	0.649	0.174	1.15	1.000	1.00	1.00	1.00	1.00	1.00	6.60	653.46	1006.25	1.44	34.04	195.50
+D+0.750L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.250 ft	1	0.224	0.060	1.25	1.000	1.00	1.00	1.00	1.00	1.00	2.48	245.05	1093.75	0.54	12.76	212.50
+D+0.750L+0.750S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.250 ft	1	0.548	0.147	1.15	1.000	1.00	1.00	1.00	1.00	1.00	5.57	551.36	1006.25	1.21	28.72	195.50
+1.140D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.250 ft	1	0.200	0.053	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.82	279.36	1400.00	0.61	14.55	272.00
+1.105D+0.750L+0.75	50S				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project Title: Engineer: Project ID: Project Descr:

Project File: Chases Lot 2.ec6 **Wood Beam** LIC#: KW-06015659, Build:20.22.4.26 MYERS ENGINEERING (c) ENERCALC INC 1983-2022

DESCRIPTION: 14. Garage Door Header REV

Maximum Ford	es & S	tresse	s for l	Load	Comb	oinati	ons									
Load Combination		/lax Stre	ss Ratio	s							Mom	ent Values	3		hear Val	ues
Segment Length	Span #	М	V	c_d	CF/V	c_i	c_r	c_{m}	С _t	c _L _	М	fb	F'b	V	fv	F'v
Length = 16.250 ft	1	0.412	0.111	1.60	1.000	1.00	1.00	1.00	1.00	1.00	5.83	577.09	1400.00	1.27	30.06	272.00
+0.60D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.250 ft	t 1	0.105	0.028	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.49	147.03	1400.00	0.32	7.66	272.00
+0.460D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 16.250 ft	1	0.081	0.022	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.14	112.72	1400.00	0.25	5.87	272.00

ions					
Span	Max. "-" Defl Local	tion in Span	Load Combination	Max. "+" Defl	Location in Span
1	0.3483	8.184		0.0000	0.000
		Suppo	rt notation : Far left is #1	Values in KIPS	
	Support 1 S	Support 2			
	1.625	1.625			
	Span 1	Span Max. "-" Defl Local 1 0.3483 Support 1 \$	Span Max. "-" Defl Location in Span 1 0.3483 8.184 Support Support 1 Support 2	Span Max. "-" Defl Location in Span Load Combination 1 0.3483 8.184 Support notation : Far left is #1 Support 1 Support 2	Span Max. "-" Defl Location in Span Load Combination Max. "+" Defl 1 0.3483 8.184 0.0000 Support notation : Far left is #1 Values in KIPS Support 1 Support 2

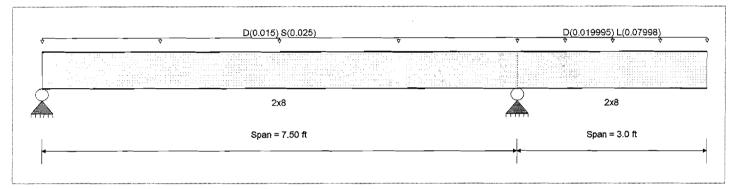
Overall MAXImum	1.625	1.625
Overall MINimum	1.016	1.016
D Only	0.609	0.609
+D+L	0.609	0.609
+D+S	1.625	1.625
+D+0.750L	0.609	0.609
+D+0.750L+0.750S	1.371	1.371
+0.60D	0.366	0.366
S Only	1.016	1.016

Chases Corner - Lot 2 Mark Myers, P.E.

 Wood Beam
 Project File: Chases Lot 2.ec6

 Lic# : KW-06015659, Build: 20.21.10.30
 MYERS ENGINEERING
 (c) ENERCALC INC 1983-2021

DESCRIPTION: 15. Deck Joists at Upper Cov'd Porch


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method	: Allowable Stress Design	Fb+	850 psi	E : Modulus of Elasti	city
Load Combination	on : IBC 2018	Fb -	850 psi	Ebend- xx	1300 ksi
		Fc - Prll	1300 psi	Eminbend - xx	470ksi
Wood Species	. Hem-Fir	Fc - Perp	405 psi		•
Wood Grade	: No.2	Fv .	150 psi		
Wood Clade	. 110.2	Ft	525 psi	Density	26.84 pcf
Beam Bracing	: Beam is Fully Braced against lateral-torsion	nal buckling	•	Repetitive Membe	r Stress Increase

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1

Uniform Load: D = 0.0150, S = 0.0250, Tributary Width = 1.0 ft

Load for Span Number 2

Uniform Load: D = 0.0150, L = 0.060 ksf, Tributary Width = 1.333 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio	=	0.438 1	Maximum S	hear Stress Ratio	=	0.275 : 1
Section used for this span		2x8	Section	used for this span		2x8
fb: Actual	=	410.84psi		fv: Actual	=	33.05 psi
Fb: Allowable	=	938.40 psi		Fv: Allowable	=	120.00 psi
Load Combination		+D+L	Load C	ombination		+D+L
Location of maximum on span	=	0.000ft	Locatio	n of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span # 2	Span #	where maximum occurs	=	Span # 2
Maximum Deflection						
Max Downward Transient Deflect	ion	0.103 in Ratio =	698 >=360	Span: 2 : L Only		
Max Upward Transient Deflection		-0.039 in Ratio =	1858 >= 360	Span: 2 : S Only		
Max Downward Total Deflection		0.105 in Ratio =	682 >=240	Span: 2 : +D+L		
Max Upward Total Deflection		-0.036 in Ratio =	1988 >=240	Span: 2 : +D+S		

Maximum For	ces & S	stresse	es for	Load	Comi	oinati	ons									
Load Combination		Vlax Stre	ess Ratio	os							Mom	ent Value	s		hear Val	ues
Segment Length	Span #	M	V	C^{d}	$c_{F/V}$	c_i	c_r	c_{m}	С _t	c _L _	М	fb	F'b	V	fv	F'v
D Only	_												0.00	0.00	0.00	0.00
Length = 7.50 ft	2	0.097	0.076	0.90	1.200	0.80	1.15	1.00	1.00	1.00	0.09	82.17	844.56	0.06	8.20	108.00
Length = 3.0 ft	2	0.097	0.076	0.90	1.200	0.80	1.15	1.00	1.00	1.00	0.09	82.17	844.56	0.05	8.20	108.00
+D+L					1.200	0.80	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.50 ft	2	0.438	0.275	1.00	1.200	0.80	1.15	1.00	1.00	1.00	0.45	410.84	938.40	0.24	33.05	120.00
Length = 3.0 ft	2	0.438	0.275	1.00	1.200	0.80	1.15	1.00	1.00	1.00	0.45	410.84	938.40	0.24	33.05	120.00
+D+S					1.200	0.80	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.50 ft	2	0.201	0.138	1.15	1.200	0.80	1.15	1.00	1.00	1.00	0.24	217.39	1079.16	0.14	19.11	138.00
Length = 3.0 ft	2	0.076	0.138	1.15	1.200	0.80	1.15	1.00	1.00	1.00	0.09	82.17	1079.16	0.05	19.11	138.00
+D+0.750L					1.200	0.80	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.50 ft	2	0.280	0.176	1.25	1.200	0.80	1.15	1.00	1.00	1.00	0.36	328.67	1173.00	0.19	26.44	150.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project File: Chases Lot 2.ec6

LIC#: KW-06015659, E	Build:20.21	.10.30				M	YERS E	NGINE	RING	<u> </u>			(c)	ENERCAL		3-2021
DESCRIPTION			oists at	Uppe	er Cov	'd Por	ch									
			_									*				
Maximum For		S tress Max Stre			Com	binati	ons	_			Mom	ent Value			Shear Val	1169
Load Combination Segment Length	Span #	M	V	Cd	C _{F/V}	Ci	c_r	Сm	c t	c _L -	M	fb	F'b	$\overline{}$	fv	F'v
							1.15	1.00		1.00						
Length = 3.0 ft	2	0.280	0.176	1.25	1.200 1.200	0.80	1.15	1.00	1.00		0.36	328.67	1173.00	0.19 0.00	26.44 0.00	150.00 0.00
+D+0.750L+0.750S Length = 7.50 ft	2	0.305	0.192	1 15	1.200	0.80	1.15	1.00	1.00		0.36	220 67	0.00 1079.16	0.00	26.44	138.00
Length = 7.50 ft	2	0.305			1.200	0.80	1.15	1.00	1.00		0.36	. —	1079.16	0.19	26.44	138.00
+1.140D	2	0.505	0.192	1.13	1.200	0.80	1.15	1.00		1.00	0.30	320.07	0.00	0.00	0.00	0.00
Length = 7.50 ft	2	0.062	0.049	1.60	1.200	0.80	1.15	1.00		1.00	0.10	03.67	1501.44	0.07	9.35	192.00
Length = 3.0 ft	2	0.062			1.200	0.80	1.15	1.00		1.00	0.10		1501.44	0.05	9.35	192.00
+1.105D+0.750L+0.7		0.002	0.040	1.00	1.200	0.80	1.15	1.00	1.00		0.10	33.07	0.00	0.00	0.00	0.00
Length = 7.50 ft	2	0.225	0.141	1 60	1.200	0.80	1.15	1.00		1.00	0.37	337 30	1501.44	0.20	27.13	192.00
Length = 3.0 ft	2	0.225			1.200	0.80	1.15	1.00		1.00	0.37		1501.44	0.20	27.13	192.00
+0.60D	_	0.220	• • • • • • • • • • • • • • • • • • • •		1.200	0.80	1.15	1.00		1.00	0.07	007.00	0.00	0.00	0.00	0.00
Length = 7.50 ft	2	0.033	0.026	1.60	1.200	0.80	1.15	1.00		1.00	0.05	49.30	1501.44	0.04	4.92	192.00
Length = 3.0 ft	2	0.033	0.026		1.200	0.80	1.15	1.00		1.00	0.05		1501.44	0.03	4.92	192.00
+0.460D	_		****		1.200	0.80	1.15	1.00	1.00	1.00	0.00		0.00	0.00	0.00	0.00
Length = 7.50 ft	2	0.025	0.020	1.60	1.200	0.80	1.15	1.00	1.00	1.00	0.04	37.80	1501.44	0.03	3.77	192.00
Length ≈ 3.0 ft	2	0.025	0.020	1.60	1.200	0.80	1.15	1.00	1.00	1.00	0.04	37.80	1501.44	0.02	3.77	192.00
Overall Maximur	n Defle	ctions	5													
Load Combination		S	pan l	Max. "-	" Defl L	ocation	in Spa	an	Load C	ombina	ation		Max. "+	" Defl Lo	cation in	Span
+D+S			1	Ō	.0395		3.645	·	L Oni	у			-0	.0384	4.	358
+D+L			2	0	.1055		3.000	ı					0	.0000	4.	358
Vertical Reaction	ns						Su	pport n	otation	: Far k	eft is #1		Values ir	KIPS		
Load Combination					Suppor	t 1 Sup	port 2	Suppo	ort 3				_			
Overall MAXimum					0.1	38	0.416			-						
Overall MINimum					0.0	94	0.094									
D Only					0.0)44	0.128									
+D+L					-0.0	04	0.416									
+D+S					0.1	38	0.222									
+D+0.750L					0.0	80	0.344									
+D+0.750L+0.750S	3				0.0	79	0.414									
+0.60D					0:0	27	0.077									
L Only					-0.0		0.288									
S Only					0.0	94	0.094									

Chases Corner - Lot 2 Mark Myers, P.E.

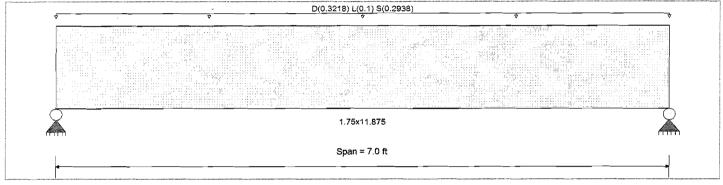
Wood Beam

LIC# : KW-06015659, Build: 20.21,10.30

MYERS ENGINEERING

(c) ENERCALC INC 1983-2021

DESCRIPTION: 16. Rim Beam at Grid 4


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

2,325.0 psi E: Modulus of Elasticity Analysis Method: Allowable Stress Design Fb+ Fb -2,325.0 psi Ebend-xx 1.550.0 ksi Load Combination: IBC 2018 Fc - Prll 2,050.0 psi Eminbend - xx 787.82 ksi Fc - Perp 800.0 psi : iLevel Truss Joist Wood Species 310.0 psi Fv Wood Grade TimberStrand LSL 1.55E Ft 1,070.0 psi 45.010 pcf Density Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.3218, L = 0.10, S = 0.2938, Tributary Width = 1.0 ft

DESIGN SUMMARY Design OK Maximum Bending Stress Ratio 0.412 1 Maximum Shear Stress Ratio 0.316:1 Section used for this span Section used for this span 1.75x11.875 1.75x11.875 fv: Actual fb: Actual = 1,102.87 psi 112.67 psi Fb: Allowable 2,673.75 psi Fv: Allowable 356.50 psi +D+0.750L+0.750S Load Combination +D+0.750L+0.750S Load Combination Location of maximum on span 3.500ft Location of maximum on span 6.029 ft Span # where maximum occurs Span #1 Span # where maximum occurs Span #1 = Maximum Deflection Max Downward Transient Deflection 0.042 in Ratio = 1991 >=480 Span: 1: S Only 0 in Ratio = Max Upward Transient Deflection 0 < 480 n/a Max Downward Total Deflection 0.089 in Ratio = 948 >= 360 Span: 1: +D+0.750L+0.750S Max Upward Total Deflection 0 in Ratio = 0 < 360

Maximum Forces & Stresses for Load Combinations Moment Values Shear Values Load Combination Max Stress Ratios c_{m} C t c_{L} CF/V C_r fb F'b Segment Length Span # М c_d Сi М fv D Only 0.00 0.00 0.00 0.00 Length = 7.0 ft 0.90 1.000 1.00 1.00 1.00 1.00 0.275 0.211 1.00 1 1.97 575.07 2092.50 0.81 58.75 279 00 1.00 1.00 1.00 1.00 1.000 1.00 0.00 0.00 0.00 0.00 Length = 7.0 ft 1 0.324 0.248 1.00 1.000 1.00 1.00 1.00 1.00 1.00 2.58 753.77 2325.00 1.07 77.00 310.00 1.000 1.00 1.00 1.00 1.00 +D+S 1.00 0.00 0.00 0.00 0.00 1.00 Length = 7.0 ft0.411 0.315 1.15 1.000 1.00 1.00 1.00 1.00 1 1,100.10 2673.75 356.50 3.77 1.56 112.38 +D+0.750L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 7.0 ft1 0.244 0.187 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.43 709.10 2906.25 1.00 72.44 387.50 1.00 1.00 +D+0.750L+0.750S 1.000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 7.0 ft 1 0.412 0.316 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.78 1.56 112.67 356.50 1,102.87 2673.75 +1.140D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 Length = 7.0 ft1 0.176 0.135 1.60 1.000 2.25 655.58 3720.00 0.93 66.97 496.00 +1.105D+0.750L+0.750S 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 7.0 ft0.313 0.240 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.99 1,163.25 3720.00 1.65 118.83 496.00

Chases Corner - Lot 2 Mark Myers, P.E.

Wood Beam														File: Cha		Ministration
LIC# : KW-06015659, E						M)	YERS E	NGINE	RING		_		(c)	ENERCAL	C INC 198	3-2021
DESCRIPTION	: 16. R	im Bea	am at	Grid 4	1											
Maximum For					Com	binati	ons									
Load Combination		Max Stre	ss Rati			_						ent Value			Shear Val	lues
Segment Length	Span #	М	V	Cd	CF/V	Ci	Cr	c_{m}	C t	CL	M	fb	F'b		fv	F'v
+0.60D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.093	0.071	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.18	345.04	3720.00	0.49	35.25	496.00
+0.460D					1.000	1.00	1.00	1.00	1.00				0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.071	0.054	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.91	264.53	3720.00	0.37	27.02	496.00
Overall Maximur	n Defle	ctions	;													
Load Combination		Sı	pan	Max. "-	" Defi	Locatio	n in Spa	an	Load C	Combina	ation		Max. "+	Defi Lo	cation in	Span
+D+0.750L+0.750	s		1	0	.0886		3.526						0	0000	0.	000
Vertical Reaction	ns						Su	pport r	otation	ı : Far k	eft is #1		Values in	KIPS		
Load Combination					Suppo	rt 1 Su	pport 2									
Overall MAXimum					2.	160	2.160									
Overall MINimum					1.0	028	1.028									
D Only					1.1	126	1.126									
+D+L						476	1.476									
+D+S						155	2.155									
+D+0.750L	_					389	1.389									
+D+0.750L+0.7508	S					160	2.160									
+0.60D						576	0.676									
L Only						350 028	0.350 1.028									

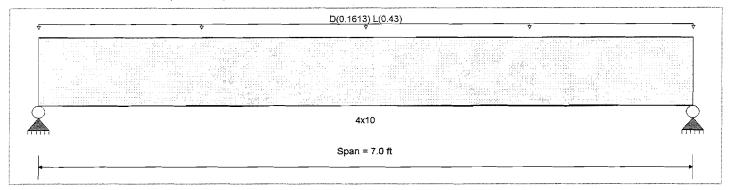
Project Title: Engineer: Project ID:

Chases Corner - Lot 2 Mark Myers, P.E.

Project Descr:

Project File: Chases Lot 2.ec6 **Wood Beam** (c) ENERCALC INC 1983-2021 LIC#: KW-06015659, Build:20.21.10.30 MYERS ENGINEERING

DESCRIPTION: 17. Crawl Beams NOT at brg wall


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elas	ticity
Load Combination IBC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0 ksi
12.2.2.2	Fc - Pril	1,350.0 psi	Eminbend - xx	580.0ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv	180.0 psi		
44000 Olado . 140.2	Ft	575.0 psi	Density	31.210 pcf
Ream Bracing . Beam is Fully Braced against lateral-ton	sional huckling	•	•	•

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.1613, L = 0.430, Tributary Width = 1.0 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.806 1 4x10		hear Stress Ratio used for this span	=	0.416 : 1 4x10
fb: Actual	=	870.75psi		fv: Actual	=	74.89 psi
Fb: Allowable	=	1,080.00psi		Fv: Allowable	=	180.00 psi
Load Combination		+D+L	Load C	ombination		+D+L
Location of maximum on span	=	3.500ft	Locatio	n of maximum on span	=	6.234 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflec Max Upward Transient Deflection		0.063 in Ratio =	1327 >=480 0 <480	Span: 1 : L Only		
Max Downward Total Deflection	1	0.087 in Ratio =	965>=360	Span: 1 : +D+L		
Max Upward Total Deflection		0 in Ratio =	0 < 360	n/a		

Maximum For	ces & S	Stress	es for	Load	Com	oinati	ons									
Load Combination	ľ	Max Stre	ess Ratio	os							Mom	ent Value	s		hear Val	ues
Segment Length	Span #	М	V	c_d	c_{FN}	Сį	c_r	c_{m}	c _t	C ^L	M	fb	F'b	V	fv	F'v
D Only	-												0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.244	0.126	0.90	1.200	1.00	1.00	1.00	1.00	1.00	0.99	237.53	972.00	0.44	20.43	162.00
+D+L					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $= 7.0 \text{ ft}$	1	0.806	0.416	1.00	1.200	1.00	1.00	1.00	1.00	1.00	3.62	870.75	1080.00	1.62	74.89	180.00
+D+S					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $= 7.0 \text{ ft}$	1	0.191	0.099	1.15	1.200	1.00	1.00	1.00	1.00	1.00	0.99	237.53	1242.00	0.44	20.43	207.00
+D+0.750L					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.528	0.272	1.25	1.200	1.00	1.00	1.00	1.00	1.00	2.96	712.45	1350.00	1.32	61.27	225.00
+D+0.750L+0.750S					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.574	0.296	1.15	1.200	1.00	1.00	1.00	1.00	1.00	2.96	712.45	1242.00	1.32	61.27	207.00
+1.140D					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.157	0.081	1.60	1.200	1.00	1.00	1.00	1.00	1.00	1.13	270.79	1728.00	0.50	23.29	288.00
+1.105D+0.750L+0.7	750S				1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.427	0.220	1.60	1.200	1.00	1.00	1.00	1.00	1.00	3.07	737.39	1728.00	1.37	63.42	288.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project Title: Engineer: Project ID: Project Descr:

Wood Beam										*			Park, A. Bridge	File: Cha		
LIC# : KW-06015659, E	3uild:20.21	.10.30				M	YERS E	NGINE	RING				(c)	ENERCAL	C INC 198	3-2021
DESCRIPTION:	: 17. C	rawl B	eams	NOT	at brg	wall										
Maximum Ford	ces & S	itresse	es for	Load	Comi	binati	ons									
Load Combination	1	Max Stre	ss Rati								Mom	ent Value	s	- 5	Shear Val	ues
Segment Length	Span #	М	V	c_d	CFN	Ci	c_r	c_{m}	c_{t}	CL	M	fb	F'b	V	fv	F'v
+0.60D					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $= 7.0 \text{ ft}$	1	0.082	0.043	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.59	142.52	1728.00	0.26	12.26	288.00
+0.460D					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 7.0 ft	1	0.063	0.033	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.45	109.26	1728.00	0.20	9.40	288.00
Overall Maximur	n Defle	ctions	•													
Load Combination		S	pan	Max. "-	" Defl L	ocation	n in Sp	an	Load C	ombin	ation		Max. "+	"Defl Lo	cation in	Span
+D+L			1	C	.0870		3.526	3					0	.0000	0.	000
Vertical Reaction	ns						Su	pport r	otation	: Far I	eft is #1		Values in	KIPS		
Load Combination					Suppor	t 1 Su	oport 2									
Overall MAXimum					2.0	70	2.070									
Overall MiNimum					1.5	05	1.505									
D Only					0.5	65	0.565									
+D+L					2.0	70	2.070									
+D+S					0.5	65	0.565									
+D+0.750L					1.6	93	1.693									
+D+0.750L+0.7508	3				1.6	93	1.693									
+0.60D					0.3	39	0.339									
L Only					1.5	05	1.505									
S Only																

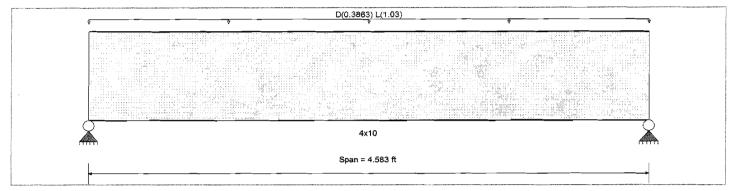
Project Title: Engineer: Chases Corner - Lot 2 Mark Myers, P.E.

Project ID: Project Descr:

 Wood Beam
 Project File: Chases Lot 2.ec6

 LiC# : KW-06015659, Build:20.21.10.30
 MYERS ENGINEERING
 (c) ENERCALC INC 1983-2021

DESCRIPTION: 18. Crawl Beams at brg wall


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method	i :	Allowable Stress Design	Fb +	900.0 psi	E : Modulus of Elas	ticity
Load Combination		<u> </u>	Fb -	900.0 psi	Ebend- xx	1,600.0ksi
		Fc - Pril	1,350.0 psi	Eminbend - xx	580.0ksi	
Wood Species Wood Grade	:	DouglasFir-Larch No.2	Fc - Perp Fv	625.0 psi 180.0 psi		
	:		Ft Ft	575.0 psi	Density	31.210pcf
Beam Bracing	:	Beam is Fully Braced against lateral-to	rsional buckling		•	•

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.3863, L = 1.030, Tributary Width = 1.0 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio	0.828 1 Maximum Shear Stress Ratio				0.555 : 1	
Section used for this span		4x10	Section	used for this span		4x10
fb: Actual =		894.02 psi		fv: Actual	=	99.88 psi
Fb: Allowable =		1,080.00psi		Fv: Allowable	=	180.00 psi
Load Combination	+D+L	Load C	ombination		+D+L	
Location of maximum on span	=	2.292ft	Location of maximum on span			3.814 ft
Span # where maximum occurs	Span # 1	Span #	where maximum occurs	=	Span # 1	
Maximum Deflection						
Max Downward Transient Deflect	ion	0.028 in Ratio =	1975>=480	Span: 1 : L Only		
Max Upward Transient Deflection	0 in Ratio =	0 <480	n/a			
Max Downward Total Deflection		0.038 in Ratio =	1436 >=360	Span: 1 : +D+L		
Max Upward Total Deflection		0 in Ratio =	0 < 360	n/a		

Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values C_{F/V} С_t C_d C_r Span # М Ci Cm М fb F'b v Segment Length f٧ F'n D Only 0.00 0.00 0.00 0.00 Length = 4.583 ft 0.251 0.168 0.90 1.200 1.00 1.00 1.00 1.00 1.00 1.01 243.85 972.00 0.59 27.24 162.00 1.00 1.00 1.00 +D+I 1.200 1.00 1.00 0.00 0.00 0.00 0.00 0.828 0.555 1.00 1.200 1.00 1.00 1.00 1.00 1.00 Length = 4.583 ft 3.72 894.02 1080.00 2.16 99.88 180.00 1.00 1.00 +D+S 1.200 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 4.583 ft 0.196 0.132 1.15 1.200 1.00 1.00 1.00 1.00 1.00 243.85 1242.00 207.00 1.01 0.59 27.24 +D+0.750L 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 4.583 ft 0.542 0.363 1.25 1.200 1.00 1.00 1.00 1.00 1.00 1 731.47 1350.00 81.72 3.04 1.76 225.00 +D+0.750L+0.750S 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.589 0.395 1.15 1.200 1.00 Length = 4.583 ft 1.00 1.00 1.00 1.00 3.04 731.47 1242.00 1.76 81.72 207.00 +1.140D 1.00 1.00 1.00 1.00 1.00 1.200 0.00 0.00 0.00 0.00 Length = 4.583 ft 1.60 1.200 1.00 1.00 1.00 1.00 1.00 288.00 0.161 0.108 1.16 277.98 1728.00 0.67 31.06 +1.105D+0.750L+0.750S 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.438 0.294 1.60 1.200 1.00 1.00 1.00 1.00 Length = 4.583 ft 3.15 757.08 1728.00 1.83 84.58 288.00

Chases Corner - Lot 2 Mark Myers, P.E.

Project File: Chases Lot 2.ec6 **Wood Beam** MYERS ENGINEERING (c) ENERCALC INC 1983-2021 LIC#: KW-06015659, Build:20.21.10.30 **DESCRIPTION:** 18. Crawl Beams at brg wall

Load Combination		Vlax Stre	ss Rati	ō\$							Moment Values			Shear Values		
Segment Length	Span #	M	\overline{v}	C_d	C _{F/V}	ci	c_{r}	c_{m}	С _t	CL _	M	fb	F'b	V	fv	F'v
+0.60D					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 4.583 ft	1	0.085	0.057	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.61	146.31	1728.00	0.35	16.35	288.00
+0.460D					1.200	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 4.583 ft	1	0.065	0.044	1.60	1.200	1.00	1.00	1.00	1.00	1.00	0.47	112.17	1728.00	0.27	12.53	288.00
Overall Maximun	n Defle	ctions	•													
Load Combination		S	pan	Max. "-	" Defl L	ocatio	n in Sp	an	Load C	ombin	ation	_	Max. "+"	Defl Lo	cation in	Span
+D+L			1	0	.0383		2.308	-		-			0.	0000	0.	000
Vertical Reaction	าร						Su	pport r	otation	: Far l	eft is #1		Values in	KIPS		
Load Combination				•	Suppor	t 1 Su	oport 2									
Overall MAXimum					3.2	245	3.245		-							
Overall MINimum					2.3	360	2.360									
D Only					0.8	385	0.885									
+D+L					3.2	245	3.245									
+D+S					0.8	385	0.885									
+D+0.750L					2.6	555	2.655									
+D+0.750L+0.750S	3				2.6	355	2.655									
+0.60D					0.5	531	0.531									
L Only					23	360	2.360									

S Only

Maximum Load For 6x6 DF#1 Wood Post

$$\underline{psf} := \frac{psi}{144} \quad \underline{plf} := psf \cdot ft \qquad \underline{lb} := plf \cdot ft \qquad \underline{H} := 10 \cdot ft$$

$$F_c := 1000 \cdot psi$$
 $C_D := 1$

$$F_c := 1000 \cdot psi$$
 $C_{Fb} := 1$ $C_{Fb} := 1$ $C_M := 1$ $C_{Abb} := 1$ $C_L := 1$ $C_{Fc} := 1$

$$F''_c := F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 1000 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} := \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 1008 \cdot psi$$

$$C_p \coloneqq \left[\frac{1 + \frac{F_{CE}}{F_c^{"}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F_c^{"}}}{2 \cdot C}\right)^2 - \frac{F_{CE}}{C}} \right] \cdot K_f$$

$$F'_c := C_p \cdot F''_c$$
 $F'_c = 694 \cdot psi$

$$F'_c = 694 \cdot psi$$

$$P_{\text{max}} := F'_{c} \cdot A$$

6x6 Wood Post Properties

$$K_f := 1$$

(K_f = 0.6 for unbraced nailed built up posts - 0.75 for bolted)

$$h := 5.5 \cdot in$$

$$A := t \cdot h \qquad A = 30.2 \cdot in^2$$

$$I := \frac{t \cdot h^3}{12}$$
 $I = 76.3 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 27.7 \cdot in^3$$

$$C_p = 0.69$$

Maximum Load For 6x6 HF#2 Treated Post

$$psf := \frac{psi}{144} \qquad plf := psf \cdot ft \qquad lb := plf \cdot ft \qquad H := 10 \cdot ft$$

$$F_{\infty} := 460 \cdot \text{psi}$$
 $C_{\infty} := 3$

$$C_{\text{Fb}} = 1$$
 $C_{\text{M}} = 1$

$$F_{\text{ch}} := 460 \cdot \text{psi}$$
 $C_{\text{D}} := 1$ $C_{\text{Fb}} := 1$ $C_{\text{Ch}} := 1$ $C_{\text{Ch}} := 1$ $C_{\text{Ch}} := 1$

E' := 1045000 psi

$$F''_c = F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 460 \cdot psi$

$$F''_c = 460 \cdot psi$$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h} \qquad C := 0.8 \quad K_{CE} := 0.3$$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 659 \cdot psi$$

$$C_{\text{NN}} := \left[\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{F''_{c}}} \right] \cdot K_{f}$$

$$F'_{p}:=C_{p}\cdot F''_{q}$$

$$F'_c = 367 \cdot psi$$

$$P_{\text{max}} = F'_{c} \cdot A$$

6x6 Treated Wood Post Properties

$$K_{\rm f} := 1.0$$

(K_f = 0.6 for unbraced nailed built up posts - 0.75 for bolted)

$$h := 5.5 \cdot in$$

$$t = 5.5 \cdot in$$

$$A = 10.2 \cdot \text{in}^2$$

$$I = \frac{t \cdot h^3}{12}$$
 $I = 76.3 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 27.7 \cdot in^3$$

$$C_{\rm p} = 0.8$$

 $F_{c} = C_{p} \cdot F_{c}$ $F_{c} = 367 \cdot psi$ $P_{max} = F_{c} \cdot A$ $P_{max} = 11112 \cdot lb$ (Maximum post Capacity)

3206 50th Street Ct NW. Ste 210-B Gig Harbor, WA 98335

PROJECT : Chase's Corner - Lot 2

Phone: 253-858-3248

Email: myengineer@centurytel.net

Maximum Load For 3-2x6 HF Stud Built up Wood Post

$$psf := \frac{psi}{144} \quad plf := psf \cdot ft \qquad lb := plf \cdot ft \qquad H := 10 \cdot ft$$

$$F_{\text{C}} := 800 \cdot \text{psi}$$
 $C_{\text{D}} := 1$ $C_{\text{E}} := 1$ $C_{\text{E}} := 1$ $C_{\text{E}} := 1.1$

$$F_{c}^{"} := F_{c} \cdot C_{D} \cdot C_{Fc}$$
 $F_{c}^{"} = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$\underbrace{SL}_{:=} \frac{H}{h} \qquad \underbrace{C}_{:=} 0.8 \quad \underbrace{K_{CE}}_{:=} = 0.3$$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 756 \cdot psi$$

$$C_{\text{p}} := \begin{bmatrix} 1 + \frac{F_{\text{CE}}}{F''_{\text{c}}} & \sqrt{\left(1 + \frac{F_{\text{CE}}}{F''_{\text{c}}}\right)^2 - \frac{F_{\text{CE}}}{F''_{\text{c}}}} \\ \frac{1 + \frac{F_{\text{CE}}}{F''_{\text{c}}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{\text{CE}}}{F''_{\text{c}}}}{2 \cdot C}\right)^2 - \frac{F_{\text{CE}}}{C}} \\ C_{\text{p}} = 0.64 \end{bmatrix} \cdot K_{\text{f}}$$

$$F'_{c} := C_{p} \cdot F''_{c}$$

$$F'_c := C_p \cdot F''_c$$
 $F'_c = 560 \cdot psi$

$$P_{c} \cdot A$$

3-2x6 Built Up Post Properties

$$K_f = 1.0$$
 ($K_f = 0.6$ for unbraced nailed built up posts - 0.75 for bolted)

$$h_{\Delta} := (5.5) \cdot in$$

$$t_{i} = 3 \cdot (1.5) \cdot in$$

$$A := t \cdot h \qquad A = 24.8 \cdot in^2$$

$$I := \frac{t \cdot h^3}{12}$$
 $I = 62.4 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 22.7 \cdot in^{\frac{3}{2}}$$

$$C_p = 0.64$$

 $P_{\text{max}} = F_c \cdot A$ $P_{\text{max}} = 13863 \cdot \text{lb}$ (Maximum post Capacity)

Maximum Load For 2-2x6 HF Stud Built up Wood Post

$$psf := \frac{psi}{144} \quad plf := psf \cdot ft \qquad lb := plf \cdot ft \qquad H := 10 \cdot ft$$

$$F_{\infty}:=800 \cdot \text{psi}$$
 $C_{\text{D}}:=1$ $C_{\text{E}}:=1$ $C_{\text{D}}:=1$ $C_{\text{E}}:=1$ $C_{\text{E}}:=1.1$

$$E'_{AAA} := 1200000 \cdot psi$$

$$F''_{c} = F_{c} \cdot C_{D} \cdot C_{Fc}$$
 $F''_{c} = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} := \frac{K_{CE} \cdot E'}{\text{SI}^2}$$

$$F_{CE} = 756 \cdot \text{psi}$$

$$\text{Cond} := \left[\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{F''_{c}}} \right] \cdot K_{f} \qquad \qquad \text{Si:= } \frac{I \cdot 2}{h} \qquad S = 15.1 \cdot in^{3}$$

$$F_p := C_p \cdot F_q$$

$$F'_c = C_p \cdot F''_c$$
 $F'_c = 560 \cdot psi$

2-2x6 Built Up Post Properties

$$K_{\text{f}} := 1.0$$
 ($K_{\text{f}} = 0.6$ for unbraced nailed built up posts - 0.75 for bolted)

$$h := 5.5 \cdot in$$

$$t := (2) \cdot 1.5 \cdot in$$

$$A := t \cdot h \qquad A = 16.5 \cdot in^2$$

$$I = \frac{t \cdot h^3}{12}$$
 $I = 41.6 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 15.1 \cdot in$$

$$C_p = 0.64$$

$$P_{\text{max}} = F_c \cdot A$$
 $P_{\text{max}} = 9242 \cdot lb$ (Maximum post Capacity)

3206 50th Street Ct NW, Ste 210-B Gig Harbor, WA 98335

PROJECT : Chase's Corner - Lot 2

Phone: 253-858-3248 Email: myengineer@centurytel.net

Maximum Load For 3-2x4 HF Stud Built up Wood Post

$$psf := \frac{psi}{144}$$
 $plf := psf \cdot ft$ $lb := plf \cdot ft$ $H := 10 \cdot ft$

$$F_{\infty} := 800 \cdot \text{psi}$$
 $C_{\infty} := 1$ $C_{\infty} := 1$ $C_{\infty} := 1$ $C_{\infty} := 1$ $C_{\infty} := 1.1$

$$F''_c := F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 306 \cdot psi$$

$$C_{\text{p}} := \begin{bmatrix} 1 + \frac{F_{CE}}{F''_{c}} \\ \frac{1}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^2 - \frac{F_{CE}}{F''_{c}}} \end{bmatrix} \cdot K_{f}$$

$$S = 9.2 \cdot in^3$$

$$C_{p} = 0.32$$

$$F'_{g}:=C_{g}\cdot F''_{g}$$

$$F'_c := C_p \cdot F''_c$$
 $F'_c = 280 \cdot psi$

$$P_{\text{max}} = F'_{\text{c}} \cdot A$$

3-2x4 Built Up Post Properties

$$K_{f} = 1.0$$
 ($K_{f} = 0.6$ for unbraced nailed built up posts - 0.75 for bolted)

$$t = 3.1.5 \cdot in$$

$$A := t \cdot h \qquad A = 15.7 \cdot in^2$$

$$I := \frac{t \cdot h^3}{12}$$
 $I = 16.1 \cdot in^4$

$$S = \frac{I \cdot 2}{h} \qquad S = 9.2 \cdot in^3$$

$$C_p = 0.32$$

P_{max} = 4411·1b (Maximum post Capacity)

Maximum Load For 2-2x4 HFStud Built up Wood Post

$$psf := \frac{psi}{144} \qquad plf := psf \cdot ft \qquad lb := plf \cdot ft \qquad H := 10 \cdot ft$$

$$F_{c}:=800 \cdot psi$$
 $C_{D}:=1$ $C_{RD}:=1$ $C_{M}:=1$ $C_{U}:=1$ $C_{L}:=1$ $C_{RC}:=1.1$

$$F''_{c} := F_{c} \cdot C_{D} \cdot C_{Fc}$$
 $F''_{c} = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{\text{SI}^2}$$

$$F_{CE} = 306 \cdot \text{psi}$$

$$C_{\text{per}} := \left[\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{F''_{c}}} \right] \cdot K_{f}$$
 $S = 6.1 \cdot in^{3}$ $C_{p} = 0.32$

$$F'_{c} := C_{p} \cdot F''_{c}$$

$$F'_c = 280 \cdot psi$$

$$P_{c}$$
:= F'_{c} ·A

2-2x4 Built Up Post Properties

$$h := 3.5 \cdot in$$

$$t = (2) \cdot 1.5 \cdot in$$

$$A := t \cdot h \qquad A = 10.5 \cdot in^2$$

$$I = \frac{t \cdot h^3}{12} \qquad I = 10.7 \cdot in^4$$

$$S := \frac{I \cdot 2}{L} \qquad S = 6.1 \cdot in^{\frac{1}{2}}$$

$$C_p = 0.32$$

3206 50th Street Ct NW, Ste 210-B Gig Harbor, WA 98335

PROJECT : Chase's Corner - Lot 2

Phone: 253-858-3248

Email: myengineer@centurytel.net

Maximum Load For 4x4 HF#2 Treated Post

$$F_{\text{C}} := 1040 \cdot \text{psi}$$
 $C_{\text{D}} := 1$ $C_{\text{E}} := 1$ $C_{\text{C}} := 1$ $C_{\text{E}} := 1$ $C_{\text{E}} := 1$

$$F''_{c} := F_{c} \cdot C_{D} \cdot C_{Fc}$$
 $F''_{c} = 1040 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 807 \cdot psi$$

$$C_{\text{min}} := \left[\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{F''_{c}}} \right] \cdot K_{f}$$

$$S := \frac{I \cdot 2}{h}$$

$$S = 7.1 \cdot \text{in}^{3}$$

$$C_{p} = 0.6$$

$$F'_{c} := C_{p} \cdot F''_{c}$$

$$F'_c = 622 \cdot psi$$

$$P_{max} := F'_{a} \cdot A$$

4x4 Treated Wood Post Properties

$$h := 3.5 \cdot in$$

$$t = 3.5 \cdot in$$

$$A = 12.2 \cdot \text{in}^2$$

$$I = \frac{t \cdot h^3}{12}$$
 $I = 12.5 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 7.1 \cdot in^3$$

$$C_{p} = 0.6$$

$$F'_c = C_p \cdot F''_c$$
 $F'_c = 622 \cdot psi$ $P_{max} = F'_c \cdot A$ $P_{max} = 7618 \cdot lb$ (Maximum post Capacity)